
Jinja2 Documentation
Release 2.0

Armin Ronacher

May 21, 2009

CONTENTS

1 Introduction 1
1.1 Prerequisites . 1
1.2 Installation . 1
1.3 Basic API Usage . 3

2 API 5
2.1 Basics . 5
2.2 Unicode . 5
2.3 High Level API . 6
2.4 Notes on Identifiers . 10
2.5 Undefined Types . 10
2.6 The Context . 12
2.7 Loaders . 13
2.8 Bytecode Cache . 15
2.9 Utilities . 17
2.10 Exceptions . 19
2.11 Custom Filters . 19
2.12 Custom Tests . 20
2.13 The Global Namespace . 20
2.14 Low Level API . 21

3 Sandbox 23

4 Template Designer Documentation 25
4.1 Synopsis . 25
4.2 Variables . 26
4.3 Filters . 26
4.4 Tests . 26
4.5 Comments . 27
4.6 Whitespace Control . 27
4.7 Escaping . 28
4.8 Line Statements . 28
4.9 Template Inheritance . 29
4.10 HTML Escaping . 30
4.11 List of Control Structures . 31
4.12 Import Context Behavior . 36
4.13 Expressions . 36
4.14 List of Builtin Filters . 39
4.15 List of Builtin Tests . 43
4.16 List of Global Functions . 44
4.17 Extensions . 45

5 Extensions 47
5.1 Adding Extensions . 47

i

5.2 i18n Extension . 47
5.3 Expression Statement . 48
5.4 Loop Controls . 48
5.5 Writing Extensions . 48

6 Integration 59
6.1 Babel Integration . 59
6.2 Pylons . 59
6.3 TextMate . 60
6.4 Vim . 60

7 Switching from other Template Engines 61
7.1 Jinja1 . 61
7.2 Django . 62
7.3 Mako . 64

8 Tips and Tricks 65
8.1 Null-Master Fallback . 65
8.2 Alternating Rows . 65
8.3 Highlighting Active Menu Items . 66
8.4 Accessing the parent Loop . 66

9 Frequently Asked Questions 67
9.1 Why is it called Jinja? . 67
9.2 How fast is it? . 67
9.3 How Compatible is Jinja2 with Django? . 67
9.4 Isn’t it a terrible idea to put Logic into Templates? . 68
9.5 Why is Autoescaping not the Default? . 68
9.6 Why is the Context immutable? . 68
9.7 I don’t have the _speedups Module. Is Jinja slower now? 69
9.8 My tracebacks look weird. What’s happening? . 69
9.9 Why is there no Python 2.3 support? . 69

10 Changelog 71
10.1 Version 2.1.1 . 71
10.2 Version 2.1 . 71
10.3 Version 2.0 . 72
10.4 Version 2.0rc1 . 72

Index 73

ii

CHAPTER

ONE

INTRODUCTION

This is the documentation for the Jinja2 general purpose templating language. Jinja2 is a library for
Python 2.4 and onwards that is designed to be flexible, fast and secure.

If you have any exposure to other text-based template languages, such as Smarty or Django, you should
feel right at home with Jinja2. It’s both designer and developer friendly by sticking to Python’s princi-
ples and adding functionality useful for templating environments.

The key-features are...

• ... configurable syntax. If you are generating LaTeX or other formats with Jinja2 you can change
the delimiters to something that integrates better into the LaTeX markup.

• ... fast. While performance is not the primarily target of Jinja2 it’s surprisingly fast. The overhead
compared to regular Python code was reduced to the very minimum.

• ... easy to debug. Jinja2 integrates directly into the python traceback system which allows you to
debug Jinja2 templates with regular python debugging helpers.

• ... secure. It’s possible to evaluate untrusted template code if the optional sandbox is enabled.
This allows Jinja2 to be used as templating language for applications where users may modify the
template design.

1.1 Prerequisites

Jinja2 needs at least Python 2.4 to run. Additionally a working C-compiler that can create python
extensions should be installed for the debugger. If no C-compiler is available and you are using Python
2.4 the ctypes module should be installed.

If you don’t have a working C compiler and you are trying to install the source release you will get a
compiler error. This however can be circumvented by passing the --without-speedups command
line argument to the setup script.

For more details about that have a look at the Disable the speedups Module section below.

1.2 Installation

You have multiple ways to install Jinja2. If you are unsure what to do, go with the Python egg or tarball.

1.2.1 As a Python egg (via easy_install)

You can install the most recent Jinja2 version using easy_install or pip:

sudo easy_install Jinja2
sudo pip install Jinja2

1

http://python.net/crew/theller/ctypes/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://pypi.python.org/pypi/pip

Jinja2 Documentation, Release 2.0

This will install a Jinja2 egg in your Python installation’s site-packages directory.

(If you are installing from the windows command line omit the sudo and make sure to run the command
as user with administrator rights)

1.2.2 From the tarball release

1. Download the most recent tarball from the download page

2. Unpack the tarball

3. sudo python setup.py install

Note that the last command will automatically download and install setuptools if you don’t already
have it installed. This requires a working internet connection.

This will install Jinja2 into your Python installation’s site-packages directory.

1.2.3 Installing the development version

1. Install mercurial

2. hg clone http://dev.pocoo.org/hg/jinja2-main jinja2

3. cd jinja2

4. ln -s jinja2 /usr/lib/python2.X/site-packages

As an alternative to steps 4 you can also do python setup.py develop which will install the pack-
age via setuptools in development mode. This also has the advantage that the C extensions are com-
piled.

Alternative you can use easy_install to install the current development snapshot:

sudo easy_install Jinja2==dev

Or the new pip command:

sudo pip install Jinja2==dev

1.2.4 Disable the speedups Module

By default Jinja2 will try to compile the speedups module. This of course will fail if you don’t have the
Python headers or a working compiler. This is often the case if you are installing Jinja2 from a windows
machine.

You can disable the speedups extension when installing using the --without-speedups flag:

sudo python setup.py install --without-speedups

You can also pass this parameter to easy_install or pip.

2 Chapter 1. Introduction

http://jinja.pocoo.org/2/download
http://peak.telecommunity.com/DevCenter/setuptools
http://www.selenic.com/mercurial/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://pypi.python.org/pypi/pip

Jinja2 Documentation, Release 2.0

1.3 Basic API Usage

This section gives you a brief introduction to the Python API for Jinja2 templates.

The most basic way to create a template and render it is through Template. This however is not the
recommended way to work with it if your templates are not loaded from strings but the file system or
another data source:

>>> from jinja2 import Template
>>> template = Template(’Hello {{ name }}!’)
>>> template.render(name=’John Doe’)
u’Hello John Doe!’

By creating an instance of Template you get back a new template object that provides a method called
render() which when called with a dict or keyword arguments expands the template. The dict or
keywords arguments passed to the template are the so-called “context” of the template.

What you can see here is that Jinja2 is using unicode internally and the return value is an unicode string.
So make sure that your application is indeed using unicode internally.

1.3. Basic API Usage 3

Jinja2 Documentation, Release 2.0

4 Chapter 1. Introduction

CHAPTER

TWO

API

This document describes the API to Jinja2 and not the template language. It will be most useful as
reference to those implementing the template interface to the application and not those who are creating
Jinja2 templates.

2.1 Basics

Jinja2 uses a central object called the template Environment. Instances of this class are used to store the
configuration, global objects and are used to load templates from the file system or other locations. Even
if you are creating templates from string by using the constructor of Template class, an environment
is created automatically for you, albeit a shared one.

Most applications will create one Environment object on application initialization and use that to load
templates. In some cases it’s however useful to have multiple environments side by side, if different
configurations are in use.

The simplest way to configure Jinja2 to load templates for your application looks roughly like this:

from jinja2 import Environment, PackageLoader
env = Environment(loader=PackageLoader(’yourapplication’, ’templates’))

This will create a template environment with the default settings and a loader that looks up the tem-
plates in the templates folder inside the yourapplication python package. Different loaders are available
and you can also write your own if you want to load templates from a database or other resources.

To load a template from this environment you just have to call the get_template() method which
then returns the loaded Template:

template = env.get_template(’mytemplate.html’)

To render it with some variables, just call the render() method:

print template.render(the=’variables’, go=’here’)

Using a template loader rather then passing strings to Template or Environment.from_string()
has multiple advantages. Besides being a lot easier to use it also enables template inheritance.

2.2 Unicode

Jinja2 is using unicode internally which means that you have to pass unicode objects to the render
function or bytestrings that only consist of ASCII characters. Additionally newlines are normalized to
one end of line sequence which is per default UNIX style (\n).

5

Jinja2 Documentation, Release 2.0

Python 2.x supports two ways of representing string objects. One is the str type and the other is the
unicode type, both of which extend a type called basestring. Unfortunately the default is str which should
not be used to store text based information unless only ASCII characters are used. With Python 2.6 it is
possible to my unicode the default on a per module level and with Python 3 it will be the default.

To explicitly use a unicode string you have to prefix the string literal with a u: u’Hänsel und Gretel
sagen Hallo’. That way Python will store the string as unicode by decoding the string with the
character encoding from the current Python module. If no encoding is specified this defaults to ‘ASCII’
which means that you can’t use any non ASCII identifier.

To set a better module encoding add the following comment to the first or second line of the Python
module using the unicode literal:

-*- coding: utf-8 -*-

We recommend utf-8 as Encoding for Python modules and templates as it’s possible to represent ev-
ery Unicode character in utf-8 and because it’s backwards compatible to ASCII. For Jinja2 the default
encoding of templates is assumed to be utf-8.

It is not possible to use Jinja2 to process non unicode data. The reason for this is that Jinja2 uses Unicode
already on the language level. For example Jinja2 treats the non-breaking space as valid whitespace
inside expressions which requires knowledge of the encoding or operating on an unicode string.

For more details about unicode in Python have a look at the excellent Unicode documentation.

Another important thing is how Jinja2 is handling string literals in templates. A naive implementation
would be using unicode strings for all string literals but it turned out in the past that this is problematic
as some libraries are typechecking against str explicitly. For example datetime.strftime does not accept
unicode arguments. To not break it completely Jinja2 is returning str for strings that fit into ASCII and
for everything else unicode:

>>> m = Template(u"{% set a, b = ’foo’, ’föö’ %}").module
>>> m.a
’foo’
>>> m.b
u’f\xf6\xf6’

2.3 High Level API

The high-level API is the API you will use in the application to load and render Jinja2 templates. The
Low Level API on the other side is only useful if you want to dig deeper into Jinja2 or develop extensions.

class Environment([options])
The core component of Jinja is the Environment. It contains important shared variables like con-
figuration, filters, tests, globals and others. Instances of this class may be modified if they are
not shared and if no template was loaded so far. Modifications on environments after the first
template was loaded will lead to surprising effects and undefined behavior.

Here the possible initialization parameters:

block_start_string The string marking the begin of a block. Defaults to ’{%’.
block_end_string The string marking the end of a block. Defaults to ’%}’.
variable_start_string The string marking the begin of a print statement. Defaults to

’{{’.
variable_end_string The string marking the end of a print statement. Defaults to ’}}’.
comment_start_string The string marking the begin of a comment. Defaults to ’{#’.
comment_end_string The string marking the end of a comment. Defaults to ’#}’.
line_statement_prefix If given and a string, this will be used as prefix for line based

statements. See also Line Statements.

6 Chapter 2. API

http://docs.python.org/dev/howto/unicode.html

Jinja2 Documentation, Release 2.0

trim_blocks If this is set to True the first newline after a block is removed (block, not
variable tag!). Defaults to False.

newline_sequence The sequence that starts a newline. Must be one of ’\r’, ’\n’ or
’\r\n’. The default is ’\n’ which is a useful default for Linux and OS X systems
as well as web applications.

extensions List of Jinja extensions to use. This can either be import paths as strings or
extension classes. For more information have a look at the extensions documentation.

optimized should the optimizer be enabled? Default is True.
undefined Undefined or a subclass of it that is used to represent undefined values in

the template.
finalize A callable that finalizes the variable. Per default no finalizing is applied.
autoescape If set to true the XML/HTML autoescaping feature is enabled. For more

details about auto escaping see Markup.
loader The template loader for this environment.
cache_size The size of the cache. Per default this is 50 which means that if more than

50 templates are loaded the loader will clean out the least recently used template.
If the cache size is set to 0 templates are recompiled all the time, if the cache size is
-1 the cache will not be cleaned.

auto_reload Some loaders load templates from locations where the template sources
may change (ie: file system or database). If auto_reload is set to True (default) every
time a template is requested the loader checks if the source changed and if yes, it
will reload the template. For higher performance it’s possible to disable that.

bytecode_cache If set to a bytecode cache object, this object will provide a cache for the
internal Jinja bytecode so that templates don’t have to be parsed if they were not
changed.
See Bytecode Cache for more information.

shared
If a template was created by using the Template constructor an environment is created au-
tomatically. These environments are created as shared environments which means that mul-
tiple templates may have the same anonymous environment. For all shared environments
this attribute is True, else False.

sandboxed
If the environment is sandboxed this attribute is True. For the sandbox mode have a look at
the documentation for the SandboxedEnvironment.

filters
A dict of filters for this environment. As long as no template was loaded it’s safe to add new
filters or remove old. For custom filters see Custom Filters. For valid filter names have a look
at Notes on Identifiers.

tests
A dict of test functions for this environment. As long as no template was loaded it’s safe to
modify this dict. For custom tests see Custom Tests. For valid test names have a look at Notes
on Identifiers.

globals
A dict of global variables. These variables are always available in a template. As long as no
template was loaded it’s safe to modify this dict. For more details see The Global Namespace.
For valid object names have a look at Notes on Identifiers.

overlay([options])
True if the environment is just an overlay

undefined([hint, obj, name, exc])
Creates a new Undefined object for name. This is useful for filters or functions that may re-
turn undefined objects for some operations. All parameters except of hint should be provided
as keyword parameters for better readability. The hint is used as error message for the ex-
ception if provided, otherwise the error message generated from obj and name automatically.
The exception provided as exc is raised if something with the generated undefined object is

2.3. High Level API 7

Jinja2 Documentation, Release 2.0

done that the undefined object does not allow. The default exception is UndefinedError.
If a hint is provided the name may be ommited.
The most common way to create an undefined object is by providing a name only:

return environment.undefined(name=’some_name’)

This means that the name some_name is not defined. If the name was from an attribute of
an object it makes sense to tell the undefined object the holder object to improve the error
message:

if not hasattr(obj, ’attr’):
return environment.undefined(obj=obj, name=’attr’)

For a more complex example you can provide a hint. For example the first() filter creates
an undefined object that way:

return environment.undefined(’no first item, sequence was empty’)

If it the name or obj is known (for example because an attribute was accessed) it shold be
passed to the undefined object, even if a custom hint is provided. This gives undefined
objects the possibility to enhance the error message.

from_string(source, globals=None, template_class=None)
Load a template from a string. This parses the source given and returns a Template object.

get_template(name, parent=None, globals=None)
Load a template from the loader. If a loader is configured this method ask the loader for
the template and returns a Template. If the parent parameter is not None, join_path() is
called to get the real template name before loading.
The globals parameter can be used to provide template wide globals. These variables are
available in the context at render time.
If the template does not exist a TemplateNotFound exception is raised.

join_path(template, parent)
Join a template with the parent. By default all the lookups are relative to the loader root so
this method returns the template parameter unchanged, but if the paths should be relative to
the parent template, this function can be used to calculate the real template name.
Subclasses may override this method and implement template path joining here.

extend(**attributes)
Add the items to the instance of the environment if they do not exist yet. This is used by
extensions to register callbacks and configuration values without breaking inheritance.

compile_expression(source, undefined_to_none=True)
A handy helper method that returns a callable that accepts keyword arguments that appear
as variables in the expression. If called it returns the result of the expression.
This is useful if applications want to use the same rules as Jinja in template “configuration
files” or similar situations.
Example usage:

>>> env = Environment()
>>> expr = env.compile_expression(’foo == 42’)
>>> expr(foo=23)
False
>>> expr(foo=42)
True

Per default the return value is converted to None if the expression returns an undefined value.
This can be changed by setting undefined_to_none to False.

>>> env.compile_expression(’var’)() is None
True
>>> env.compile_expression(’var’, undefined_to_none=False)()
Undefined

new in Jinja 2.1

8 Chapter 2. API

Jinja2 Documentation, Release 2.0

class Template()
The central template object. This class represents a compiled template and is used to evaluate it.

Normally the template object is generated from an Environment but it also has a constructor
that makes it possible to create a template instance directly using the constructor. It takes the
same arguments as the environment constructor but it’s not possible to specify a loader.

Every template object has a few methods and members that are guaranteed to exist. However it’s
important that a template object should be considered immutable. Modifications on the object are
not supported.

Template objects created from the constructor rather than an environment do have an environment
attribute that points to a temporary environment that is probably shared with other templates
created with the constructor and compatible settings.

>>> template = Template(’Hello {{ name }}!’)
>>> template.render(name=’John Doe’)
u’Hello John Doe!’

>>> stream = template.stream(name=’John Doe’)
>>> stream.next()
u’Hello John Doe!’
>>> stream.next()
Traceback (most recent call last):

...
StopIteration

globals
The dict with the globals of that template. It’s unsafe to modify this dict as it may be shared
with other templates or the environment that loaded the template.

name
The loading name of the template. If the template was loaded from a string this is None.

filename
The filename of the template on the file system if it was loaded from there. Otherwise this is
None.

render([context])
This method accepts the same arguments as the dict constructor: A dict, a dict subclass or
some keyword arguments. If no arguments are given the context will be empty. These two
calls do the same:

template.render(knights=’that say nih’)
template.render({’knights’: ’that say nih’})

This will return the rendered template as unicode string.

generate([context])
For very large templates it can be useful to not render the whole template at once but evaluate
each statement after another and yield piece for piece. This method basically does exactly
that and returns a generator that yields one item after another as unicode strings.
It accepts the same arguments as render().

stream([context])
Works exactly like generate() but returns a TemplateStream.

module
The template as module. This is used for imports in the template runtime but is also useful
if one wants to access exported template variables from the Python layer:

>>> t = Template(’{% macro foo() %}42{% endmacro %}23’)
>>> unicode(t.module)
u’23’
>>> t.module.foo()
u’42’

2.3. High Level API 9

Jinja2 Documentation, Release 2.0

make_module(vars=None, shared=False, locals=None)
This method works like the module attribute when called without arguments but it will
evaluate the template every call rather then caching the template. It’s also possible to provide
a dict which is then used as context. The arguments are the same as for the new_context()
method.

class TemplateStream()
A template stream works pretty much like an ordinary python generator but it can buffer multiple
items to reduce the number of total iterations. Per default the output is unbuffered which means
that for every unbuffered instruction in the template one unicode string is yielded.

If buffering is enabled with a buffer size of 5, five items are combined into a new unicode string.
This is mainly useful if you are streaming big templates to a client via WSGI which flushes after
each iteration.

disable_buffering()
Disable the output buffering.

enable_buffering(size=5)
Enable buffering. Buffer size items before yielding them.

dump(fp, encoding=None, errors=’strict’)
Dump the complete stream into a file or file-like object. Per default unicode strings are writ-
ten, if you want to encode before writing specifiy an encoding.
Example usage:

Template(’Hello {{ name }}!’).stream(name=’foo’).dump(’hello.html’)

2.4 Notes on Identifiers

Jinja2 uses the regular Python 2.x naming rules. Valid identifiers have to match
[a-zA-Z_][a-zA-Z0-9_]*. As a matter of fact non ASCII characters are currently not allowed. This
limitation will probably go away as soon as unicode identifiers are fully specified for Python 3.

Filters and tests are looked up in separate namespaces and have slightly modified identifier syntax.
Filters and tests may contain dots to group filters and tests by topic. For example it’s perfectly valid
to add a function into the filter dict and call it to.unicode. The regular expression for filter and test
identifiers is [a-zA-Z_][a-zA-Z0-9_]*(\.[a-zA-Z_][a-zA-Z0-9_]*)*‘.

2.5 Undefined Types

These classes can be used as undefined types. The Environment constructor takes an undefined pa-
rameter that can be one of those classes or a custom subclass of Undefined. Whenever the template
engine is unable to look up a name or access an attribute one of those objects is created and returned.
Some operations on undefined values are then allowed, others fail.

The closest to regular Python behavior is the StrictUndefined which disallows all operations beside test-
ing if it’s an undefined object.

class Undefined()
The default undefined type. This undefined type can be printed and iterated over, but every other
access will raise an UndefinedError:

>>> foo = Undefined(name=’foo’)
>>> str(foo)
’’
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):

10 Chapter 2. API

Jinja2 Documentation, Release 2.0

...
UndefinedError: ’foo’ is undefined

_undefined_hint
Either None or an unicode string with the error message for the undefined object.

_undefined_obj
Either None or the owner object that caused the undefined object to be created (for example
because an attribute does not exist).

_undefined_name
The name for the undefined variable / attribute or just None if no such information exists.

_undefined_exception
The exception that the undefined object wants to raise. This is usually one of
UndefinedError or SecurityError.

_fail_with_undefined_error(*args, **kwargs)
When called with any arguments this method raises _undefined_exception with an er-
ror message generated from the undefined hints stored on the undefined object.

class DebugUndefined()
An undefined that returns the debug info when printed.

>>> foo = DebugUndefined(name=’foo’)
>>> str(foo)
’{{ foo }}’
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):
...

UndefinedError: ’foo’ is undefined

class StrictUndefined()
An undefined that barks on print and iteration as well as boolean tests and all kinds of compar-
isons. In other words: you can do nothing with it except checking if it’s defined using the defined
test.

>>> foo = StrictUndefined(name=’foo’)
>>> str(foo)
Traceback (most recent call last):
...

UndefinedError: ’foo’ is undefined
>>> not foo
Traceback (most recent call last):
...

UndefinedError: ’foo’ is undefined
>>> foo + 42
Traceback (most recent call last):
...

UndefinedError: ’foo’ is undefined

Undefined objects are created by calling undefined.

Implementation

Undefined objects are implemented by overriding the special __underscore__ methods. For example
the default Undefined class implements __unicode__ in a way that it returns an empty string, how-
ever __int__ and others still fail with an exception. To allow conversion to int by returning 0 you can
implement your own:

class NullUndefined(Undefined):
def __int__(self):

return 0

2.5. Undefined Types 11

Jinja2 Documentation, Release 2.0

def __float__(self):
return 0.0

To disallow a method, just override it and raise _undefined_exception. Because this is a very
common idom in undefined objects there is the helper method _fail_with_undefined_error()
that does the error raising automatically. Here a class that works like the regular Undefined but chokes
on iteration:

class NonIterableUndefined(Undefined):
__iter__ = Undefined._fail_with_undefined_error

2.6 The Context

class Context()
The template context holds the variables of a template. It stores the values passed to the template
and also the names the template exports. Creating instances is neither supported nor useful as it’s
created automatically at various stages of the template evaluation and should not be created by
hand.

The context is immutable. Modifications on parent must not happen and modifications on vars
are allowed from generated template code only. Template filters and global functions marked as
contextfunction()s get the active context passed as first argument and are allowed to access
the context read-only.

The template context supports read only dict operations (get, keys, values, items, iterkeys, itervalues,
iteritems, __getitem__, __contains__). Additionally there is a resolve() method that doesn’t fail
with a KeyError but returns an Undefined object for missing variables.

parent
A dict of read only, global variables the template looks up. These can either come from
another Context, from the Environment.globals or Template.globals or points to
a dict created by combining the globals with the variables passed to the render function. It
must not be altered.

vars
The template local variables. This list contains environment and context functions from the
parent scope as well as local modifications and exported variables from the template. The
template will modify this dict during template evaluation but filters and context functions
are not allowed to modify it.

environment
The environment that loaded the template.

exported_vars
This set contains all the names the template exports. The values for the names are in the
vars dict. In order to get a copy of the exported variables as dict, get_exported() can be
used.

name
The load name of the template owning this context.

blocks
A dict with the current mapping of blocks in the template. The keys in this dict are the names
of the blocks, and the values a list of blocks registered. The last item in each list is the current
active block (latest in the inheritance chain).

call(callable, *args, **kwargs)
Call the callable with the arguments and keyword arguments provided but inject the ac-
tive context or environment as first argument if the callable is a contextfunction() or
environmentfunction().

12 Chapter 2. API

Jinja2 Documentation, Release 2.0

resolve(key)
Looks up a variable like __getitem__ or get but returns an Undefined object with the name
of the name looked up.

get_exported()
Get a new dict with the exported variables.

get_all()
Return a copy of the complete context as dict including the exported variables.

Implementation

Context is immutable for the same reason Python’s frame locals are immutable inside functions. Both
Jinja2 and Python are not using the context / frame locals as data storage for variables but only as
primary data source.

When a template accesses a variable the template does not define, Jinja2 looks up the variable in the
context, after that the variable is treated as if it was defined in the template.

2.7 Loaders

Loaders are responsible for loading templates from a resource such as the file system. The environment
will keep the compiled modules in memory like Python’s sys.modules. Unlike sys.modules however this
cache is limited in size by default and templates are automatically reloaded. All loaders are subclasses
of BaseLoader. If you want to create your own loader, subclass BaseLoader and override get_source.

class BaseLoader()
Baseclass for all loaders. Subclass this and override get_source to implement a custom loading
mechanism. The environment provides a get_template method that calls the loader’s load method
to get the Template object.

A very basic example for a loader that looks up templates on the file system could look like this:

from jinja2 import BaseLoader, TemplateNotFound
from os.path import join, exists, getmtime

class MyLoader(BaseLoader):

def __init__(self, path):
self.path = path

def get_source(self, environment, template):
path = join(self.path, template)
if not exists(path):

raise TemplateNotFound(template)
mtime = getmtime(path)
with file(path) as f:

source = f.read().decode(’utf-8’)
return source, path, lambda: mtime == getmtime(path)

get_source(environment, template)
Get the template source, filename and reload helper for a template. It’s passed the envi-
ronment and template name and has to return a tuple in the form (source, filename,
uptodate) or raise a TemplateNotFound error if it can’t locate the template.
The source part of the returned tuple must be the source of the template as unicode string
or a ASCII bytestring. The filename should be the name of the file on the filesystem if it was
loaded from there, otherwise None. The filename is used by python for the tracebacks if no
loader extension is used.
The last item in the tuple is the uptodate function. If auto reloading is enabled it’s always
called to check if the template changed. No arguments are passed so the function must store

2.7. Loaders 13

Jinja2 Documentation, Release 2.0

the old state somewhere (for example in a closure). If it returns False the template will be
reloaded.

load(environment, name, globals=None)
Loads a template. This method looks up the template in the cache or loads one by calling
get_source(). Subclasses should not override this method as loaders working on collec-
tions of other loaders (such as PrefixLoader or ChoiceLoader) will not call this method
but get_source directly.

Here a list of the builtin loaders Jinja2 provides:

class FileSystemLoader(searchpath, encoding=’utf-8’)
Loads templates from the file system. This loader can find templates in folders on the file system
and is the preferred way to load them.

The loader takes the path to the templates as string, or if multiple locations are wanted a list of
them which is then looked up in the given order:

>>> loader = FileSystemLoader(’/path/to/templates’)
>>> loader = FileSystemLoader([’/path/to/templates’, ’/other/path’])

Per default the template encoding is ’utf-8’ which can be changed by setting the encoding pa-
rameter to something else.

class PackageLoader(package_name, package_path=’templates’, encoding=’utf-8’)
Load templates from python eggs or packages. It is constructed with the name of the python
package and the path to the templates in that package:

>>> loader = PackageLoader(’mypackage’, ’views’)

If the package path is not given, ’templates’ is assumed.

Per default the template encoding is ’utf-8’ which can be changed by setting the encoding pa-
rameter to something else. Due to the nature of eggs it’s only possible to reload templates if the
package was loaded from the file system and not a zip file.

class DictLoader(mapping)
Loads a template from a python dict. It’s passed a dict of unicode strings bound to template
names. This loader is useful for unittesting:

>>> loader = DictLoader({’index.html’: ’source here’})

Because auto reloading is rarely useful this is disabled per default.

class FunctionLoader(load_func)
A loader that is passed a function which does the loading. The function becomes the name of the
template passed and has to return either an unicode string with the template source, a tuple in the
form (source, filename, uptodatefunc) or None if the template does not exist.

>>> def load_template(name):
... if name == ’index.html’
... return ’...’
...
>>> loader = FunctionLoader(load_template)

The uptodatefunc is a function that is called if autoreload is enabled and has to return True if the
template is still up to date. For more details have a look at BaseLoader.get_source() which
has the same return value.

class PrefixLoader(mapping, delimiter=’/’)
A loader that is passed a dict of loaders where each loader is bound to a prefix. The prefix is
delimited from the template by a slash per default, which can be changed by setting the delimiter
argument to something else.

14 Chapter 2. API

Jinja2 Documentation, Release 2.0

>>> loader = PrefixLoader({
... ’app1’: PackageLoader(’mypackage.app1’),
... ’app2’: PackageLoader(’mypackage.app2’)
... })

By loading ’app1/index.html’ the file from the app1 package is loaded, by loading
’app2/index.html’ the file from the second.

class ChoiceLoader(loaders)
This loader works like the PrefixLoader just that no prefix is specified. If a template could not be
found by one loader the next one is tried.

>>> loader = ChoiceLoader([
... FileSystemLoader(’/path/to/user/templates’),
... PackageLoader(’mypackage’)
...])

This is useful if you want to allow users to override builtin templates from a different location.

2.8 Bytecode Cache

Jinja 2.1 and higher support external bytecode caching. Bytecode caches make it possible to store the
generated bytecode on the file system or a different location to avoid parsing the templates on first use.

This is especially useful if you have a web application that is initialized on the first request and Jinja
compiles many templates at once which slows down the application.

To use a bytecode cache, instanciate it and pass it to the Environment.

class BytecodeCache()
To implement your own bytecode cache you have to subclass this class and override
load_bytecode() and dump_bytecode(). Both of these methods are passed a Bucket.

A very basic bytecode cache that saves the bytecode on the file system:

from os import path

class MyCache(BytecodeCache):

def __init__(self, directory):
self.directory = directory

def load_bytecode(self, bucket):
filename = path.join(self.directory, bucket.key)
if path.exists(filename):

with file(filename, ’rb’) as f:
bucket.load_bytecode(f)

def dump_bytecode(self, bucket):
filename = path.join(self.directory, bucket.key)
with file(filename, ’wb’) as f:

bucket.write_bytecode(f)

A more advanced version of a filesystem based bytecode cache is part of Jinja2.

load_bytecode(bucket)
Subclasses have to override this method to load bytecode into a bucket. If they are not able
to find code in the cache for the bucket, it must not do anything.

dump_bytecode(bucket)
Subclasses have to override this method to write the bytecode from a bucket back to the
cache. If it unable to do so it must not fail silently but raise an exception.

2.8. Bytecode Cache 15

Jinja2 Documentation, Release 2.0

clear()
Clears the cache. This method is not used by Jinja2 but should be implemented to allow
applications to clear the bytecode cache used by a particular environment.

class Bucket(environment, key, checksum)
Buckets are used to store the bytecode for one template. It’s created and initialized by the bytecode
cache and passed to the loading functions.

The buckets get an internal checksum from the cache assigned and use this to automatically reject
outdated cache material. Individual bytecode cache subclasses don’t have to care about cache
invalidation.

environment
The Environment that created the bucket.

key
The unique cache key for this bucket

code
The bytecode if it’s loaded, otherwise None.

write_bytecode(f)
Dump the bytecode into the file or file like object passed.

load_bytecode(f)
Loads bytecode from a file or file like object.

bytecode_from_string(string)
Load bytecode from a string.

bytecode_to_string()
Return the bytecode as string.

reset()
Resets the bucket (unloads the bytecode).

Builtin bytecode caches:

class FileSystemBytecodeCache(directory=None, pattern=’__jinja2_%s.cache’)
A bytecode cache that stores bytecode on the filesystem. It accepts two arguments: The directory
where the cache items are stored and a pattern string that is used to build the filename.

If no directory is specified the system temporary items folder is used.

The pattern can be used to have multiple separate caches operate on the same directory. The
default pattern is ’__jinja2_%s.cache’. %s is replaced with the cache key.

>>> bcc = FileSystemBytecodeCache(’/tmp/jinja_cache’, ’%s.cache’)

This bytecode cache supports clearing of the cache using the clear method.

class MemcachedBytecodeCache(client, prefix=’jinja2/bytecode/’, timeout=None)
This class implements a bytecode cache that uses a memcache cache for storing the information. It
does not enforce a specific memcache library (tummy’s memcache or cmemcache) but will accept
any class that provides the minimal interface required.

Libraries compatible with this class:

•werkzeug.contrib.cache

•python-memcached

•cmemcache

(Unfortunately the django cache interface is not compatible because it does not support storing
binary data, only unicode. You can however pass the underlying cache client to the bytecode
cache which is available as django.core.cache.cache._client.)

The minimal interface for the client passed to the constructor is this:

class MinimalClientInterface()

16 Chapter 2. API

http://werkzeug.pocoo.org/
http://www.tummy.com/Community/software/python-memcached/
http://gijsbert.org/cmemcache/

Jinja2 Documentation, Release 2.0

set(key, value, [timeout])
Stores the bytecode in the cache. value is a string and timeout the timeout of the key.
If timeout is not provided a default timeout or no timeout should be assumed, if it’s
provided it’s an integer with the number of seconds the cache item should exist.

get(key)
Returns the value for the cache key. If the item does not exist in the cache the return
value must be None.

The other arguments to the constructor are the prefix for all keys that is added before the actual
cache key and the timeout for the bytecode in the cache system. We recommend a high (or no)
timeout.

This bytecode cache does not support clearing of used items in the cache. The clear method is a
no-operation function.

2.9 Utilities

These helper functions and classes are useful if you add custom filters or functions to a Jinja2 environ-
ment.

environmentfilter(f)
Decorator for marking evironment dependent filters. The current Environment is passed to the
filter as first argument.

contextfilter(f)
Decorator for marking context dependent filters. The current Context will be passed as first
argument.

environmentfunction(f)
This decorator can be used to mark a function or method as environment callable. This decorator
works exactly like the contextfunction() decorator just that the first argument is the active
Environment and not context.

contextfunction(f)
This decorator can be used to mark a function or method context callable. A context callable is
passed the active Context as first argument when called from the template. This is useful if
a function wants to get access to the context or functions provided on the context object. For
example a function that returns a sorted list of template variables the current template exports
could look like this:

@contextfunction
def get_exported_names(context):

return sorted(context.exported_vars)

escape(s)
Convert the characters &, <, >, ’, and " in string s to HTML-safe sequences. Use this if you need
to display text that might contain such characters in HTML. This function will not escaped objects
that do have an HTML representation such as already escaped data.

The return value is a Markup string.

clear_caches()
Jinja2 keeps internal caches for environments and lexers. These are used so that Jinja2 doesn’t
have to recreate environments and lexers all the time. Normally you don’t have to care about that
but if you are messuring memory consumption you may want to clean the caches.

is_undefined(obj)
Check if the object passed is undefined. This does nothing more than performing an instance
check against Undefined but looks nicer. This can be used for custom filters or tests that want to
react to undefined variables. For example a custom default filter can look like this:

2.9. Utilities 17

Jinja2 Documentation, Release 2.0

def default(var, default=’’):
if is_undefined(var):

return default
return var

class Markup([string])
Marks a string as being safe for inclusion in HTML/XML output without needing to be es-
caped. This implements the __html__ interface a couple of frameworks and web applications
use. Markup is a direct subclass of unicode and provides all the methods of unicode just that it
escapes arguments passed and always returns Markup.

The escape function returns markup objects so that double escaping can’t happen. If you want to
use autoescaping in Jinja just enable the autoescaping feature in the environment.

The constructor of the Markup class can be used for three different things: When passed an uni-
code object it’s assumed to be safe, when passed an object with an HTML representation (has
an __html__ method) that representation is used, otherwise the object passed is converted into a
unicode string and then assumed to be safe:

>>> Markup("Hello World!")
Markup(u’Hello World!’)
>>> class Foo(object):
... def __html__(self):
... return ’foo’
...
>>> Markup(Foo())
Markup(u’foo’)

If you want object passed being always treated as unsafe you can use the escape() classmethod
to create a Markup object:

>>> Markup.escape("Hello World!")
Markup(u’Hello World!’)

Operations on a markup string are markup aware which means that all arguments are passed
through the escape() function:

>>> em = Markup("%s")
>>> em % "foo & bar"
Markup(u’foo & bar’)
>>> strong = Markup("%(text)s")
>>> strong % {’text’: ’<blink>hacker here</blink>’}
Markup(u’<blink>hacker here</blink>’)
>>> Markup("Hello ") + "<foo>"
Markup(u’Hello <foo>’)

class escape(s)
Escape the string. Works like escape() with the difference that for subclasses of Markup
this function would return the correct subclass.

unescape()
Unescape markup again into an unicode string. This also resolves known HTML4 and
XHTML entities:

>>> Markup("Main » About").unescape()
u’Main \xbb About’

striptags()
Unescape markup into an unicode string and strip all tags. This also resolves known HTML4
and XHTML entities. Whitespace is normalized to one:

>>> Markup("Main » About").striptags()
u’Main \xbb About’

18 Chapter 2. API

Jinja2 Documentation, Release 2.0

Note

The Jinja2 Markup class is compatible with at least Pylons and Genshi. It’s expected that more template
engines and framework will pick up the __html__ concept soon.

2.10 Exceptions

exception TemplateError
Baseclass for all template errors.

exception UndefinedError
Raised if a template tries to operate on Undefined.

exception TemplateNotFound
Raised if a template does not exist.

exception TemplateSyntaxError
Raised to tell the user that there is a problem with the template.

message
The error message as utf-8 bytestring.

lineno
The line number where the error occurred

name
The load name for the template as unicode string.

filename
The filename that loaded the template as bytestring in the encoding of the file system (most
likely utf-8 or mbcs on Windows systems).

The reason why the filename and error message are bytestrings and not unicode strings is that
Python 2.x is not using unicode for exceptions and tracebacks as well as the compiler. This will
change with Python 3.

exception TemplateAssertionError
Like a template syntax error, but covers cases where something in the template caused an error at
compile time that wasn’t necessarily caused by a syntax error. However it’s a direct subclass of
TemplateSyntaxError and has the same attributes.

2.11 Custom Filters

Custom filters are just regular Python functions that take the left side of the filter as first argument and
the the arguments passed to the filter as extra arguments or keyword arguments.

For example in the filter {{ 42|myfilter(23) }} the function would be called with
myfilter(42, 23). Here for example a simple filter that can be applied to datetime objects to format
them:

def datetimeformat(value, format=’%H:%M / %d-%m-%Y’):
return value.strftime(format)

You can register it on the template environment by updating the filters dict on the environment:

environment.filters[’datetimeformat’] = datetimeformat

Inside the template it can then be used as follows:

written on: {{ article.pub_date|datetimeformat }}
publication date: {{ article.pub_date|datetimeformat(’%d-%m-%Y’) }}

2.10. Exceptions 19

Jinja2 Documentation, Release 2.0

Filters can also be passed the current template context or environment. This is useful if a filters wants to
return an undefined value or check the current autoescape setting. For this purpose two decorators
exist: environmentfilter() and contextfilter().

Here a small example filter that breaks a text into HTML line breaks and paragraphs and marks the
return value as safe HTML string if autoescaping is enabled:

import re
from jinja2 import environmentfilter, Markup, escape

_paragraph_re = re.compile(r’(?:\r\n|\r|\n){2,}’)

@environmentfilter
def nl2br(environment, value):

result = u’\n\n’.join(u’<p>%s</p>’ % p.replace(’\n’, ’
\n’)
for p in _paragraph_re.split(escape(value)))

if environment.autoescape:
result = Markup(result)

return result

Context filters work the same just that the first argument is the current active Context rather then the
environment.

2.12 Custom Tests

Tests work like filters just that there is no way for a test to get access to the environment or context and
that they can’t be chained. The return value of a test should be True or False. The purpose of a test is to
give the template designers the possibility to perform type and conformability checks.

Here a simple test that checks if a variable is a prime number:

import math

def is_prime(n):
if n == 2:

return True
for i in xrange(2, int(math.ceil(math.sqrt(n))) + 1):

if n % i == 0:
return False

return True

You can register it on the template environment by updating the tests dict on the environment:

environment.tests[’prime’] = is_prime

A template designer can then use the test like this:

{% if 42 is prime %}
42 is a prime number

{% else %}
42 is not a prime number

{% endif %}

2.13 The Global Namespace

Variables stored in the Environment.globals dict are special as they are available for imported
templates too, even if they are imported without context. This is the place where you can put variables

20 Chapter 2. API

Jinja2 Documentation, Release 2.0

and functions that should be available all the time. Additionally Template.globals exist that are
variables available to a specific template that are available to all render() calls.

2.14 Low Level API

The low level API exposes functionality that can be useful to understand some implementation details,
debugging purposes or advanced extension techniques. Unless you know exactly what you are doing
we don’t recommend using any of those.

lex(source, name=None, filename=None)
Lex the given sourcecode and return a generator that yields tokens as tuples in the form
(lineno, token_type, value). This can be useful for extension development and debugging
templates.

This does not perform preprocessing. If you want the preprocessing of the extensions to be ap-
plied you have to filter source through the preprocess() method.

parse(source, name=None, filename=None)
Parse the sourcecode and return the abstract syntax tree. This tree of nodes is used by the compiler
to convert the template into executable source- or bytecode. This is useful for debugging or to
extract information from templates.

If you are developing Jinja2 extensions this gives you a good overview of the node tree generated.

preprocess(source, name=None, filename=None)
Preprocesses the source with all extensions. This is automatically called for all parsing and compil-
ing methods but not for lex() because there you usually only want the actual source tokenized.

new_context(vars=None, shared=False, locals=None)
Create a new Context for this template. The vars provided will be passed to the template. Per
default the globals are added to the context. If shared is set to True the data is passed as it to the
context without adding the globals.

locals can be a dict of local variables for internal usage.

root_render_func(context)
This is the low level render function. It’s passed a Context that has to be created by
new_context() of the same template or a compatible template. This render function is gener-
ated by the compiler from the template code and returns a generator that yields unicode strings.

If an exception in the template code happens the template engine will not rewrite the exception
but pass through the original one. As a matter of fact this function should only be called from
within a render() / generate() / stream() call.

blocks
A dict of block render functions. Each of these functions works exactly like the
root_render_func() with the same limitations.

is_up_to_date
This attribute is False if there is a newer version of the template available, otherwise True.

Note

The low-level API is fragile. Future Jinja2 versions will try not to change it in a backwards incompatible
way but modifications in the Jinja2 core may shine through. For example if Jinja2 introduces a new AST
node in later versions that may be returned by parse().

2.14. Low Level API 21

Jinja2 Documentation, Release 2.0

22 Chapter 2. API

CHAPTER

THREE

SANDBOX

The Jinja2 sandbox can be used to evaluate untrusted code. Access to unsafe attributes and methods is
prohibited.

Assuming env is a SandboxedEnvironment in the default configuration the following piece of code
shows how it works:

>>> env.from_string("{{ func.func_code }}").render(func=lambda:None)
u’’
>>> env.from_string("{{ func.func_code.do_something }}").render(func=lambda:None)
Traceback (most recent call last):

...
SecurityError: access to attribute ’func_code’ of ’function’ object is unsafe.

class SandboxedEnvironment([options])
The sandboxed environment. It works like the regular environment but tells the compiler to
generate sandboxed code. Additionally subclasses of this environment may override the methods
that tell the runtime what attributes or functions are safe to access.

If the template tries to access insecure code a SecurityError is raised. However also other
exceptions may occour during the rendering so the caller has to ensure that all exceptions are
catched.

is_safe_attribute(obj, attr, value)
The sandboxed environment will call this method to check if the attribute of an object
is safe to access. Per default all attributes starting with an underscore are considered
private as well as the special attributes of internal python objects as returned by the
is_internal_attribute() function.

is_safe_callable(obj)
Check if an object is safely callable. Per default a function is considered safe unless the
unsafe_callable attribute exists and is True. Override this method to alter the behavior, but
this won’t affect the unsafe decorator from this module.

class ImmutableSandboxedEnvironment([options])
Works exactly like the regular SandboxedEnvironment but does not permit modifications on the
builtin mutable objects list, set, and dict by using the modifies_known_mutable() function.

exception SecurityError
Raised if a template tries to do something insecure if the sandbox is enabled.

unsafe(f)
Mark a function or method as unsafe:

@unsafe
def delete(self):

pass

is_internal_attribute(obj, attr)
Test if the attribute given is an internal python attribute. For example this function returns

23

Jinja2 Documentation, Release 2.0

True for the func_code attribute of python objects. This is useful if the environment method
is_safe_attribute() is overriden.

>>> from jinja2.sandbox import is_internal_attribute
>>> is_internal_attribute(lambda: None, "func_code")
True
>>> is_internal_attribute((lambda x:x).func_code, ’co_code’)
True
>>> is_internal_attribute(str, "upper")
False

modifies_known_mutable(obj, attr)
This function checks if an attribute on a builtin mutable object (list, dict, set or deque) would mod-
ify it if called. It also supports the “user”-versions of the objects (sets.Set, UserDict.* etc.) and with
Python 2.6 onwards the abstract base classes MutableSet, MutableMapping, and MutableSequence.

>>> modifies_known_mutable({}, "clear")
True
>>> modifies_known_mutable({}, "keys")
False
>>> modifies_known_mutable([], "append")
True
>>> modifies_known_mutable([], "index")
False

If called with an unsupported object (such as unicode) False is returned.

>>> modifies_known_mutable("foo", "upper")
False

Note

The Jinja2 sandbox alone is no solution for perfect security. Especially for web applications you have to
keep in mind that users may create templates with arbitrary HTML in so it’s crucial to ensure that (if
you are running multiple users on the same server) they can’t harm each other via JavaScript insertions
and much more.

Also the sandbox is only as good as the configuration. We stronly recommend only passing non-shared
resources to the template and use some sort of whitelisting for attributes.

Also keep in mind that templates may raise runtime or compile time errors, so make sure to catch them.

24 Chapter 3. Sandbox

CHAPTER

FOUR

TEMPLATE DESIGNER
DOCUMENTATION

This document describes the syntax and semantics of the template engine and will be most useful as
reference to those creating Jinja templates. As the template engine is very flexible the configuration from
the application might be slightly different from here in terms of delimiters and behavior of undefined
values.

4.1 Synopsis

A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, LaTeX, etc.).
It doesn’t have a specific extension, .html or .xml are just fine.

A template contains variables or expressions, which get replaced with values when the template is
evaluated, and tags, which control the logic of the template. The template syntax is heavily inspired by
Django and Python.

Below is a minimal template that illustrates a few basics. We will cover the details later in that docu-
ment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>

<title>My Webpage</title>
</head>
<body>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

<h1>My Webpage</h1>
{{ a_variable }}

</body>
</html>

This covers the default settings. The application developer might have changed the syntax from {%
foo %} to <% foo %> or something similar.

There are two kinds of delimiers. {% ... %} and {{ ... }}. The first one is used to execute state-
ments such as for-loops or assign values, the latter prints the result of the expression to the template.

25

Jinja2 Documentation, Release 2.0

4.2 Variables

The application passes variables to the templates you can mess around in the template. Variables may
have attributes or elements on them you can access too. How a variable looks like, heavily depends on
the application providing those.

You can use a dot (.) to access attributes of a variable, alternative the so-called “subscript” syntax ([])
can be used. The following lines do the same:

{{ foo.bar }}
{{ foo[’bar’] }}

It’s important to know that the curly braces are not part of the variable but the print statement. If you
access variables inside tags don’t put the braces around.

If a variable or attribute does not exist you will get back an undefined value. What you can do with
that kind of value depends on the application configuration, the default behavior is that it evaluates to
an empty string if printed and that you can iterate over it, but every other operation fails.

Implementation

For convenience sake foo.bar in Jinja2 does the following things on the Python layer:

• check if there is an attribute called bar on foo.

• if there is not, check if there is an item ’bar’ in foo.

• if there is not, return an undefined object.

foo[’bar’] on the other hand works mostly the same with the a small difference in the order:

• check if there is an item ’bar’ in foo.

• if there is not, check if there is an attribute called bar on foo.

• if there is not, return an undefined object.

This is important if an object has an item or attribute with the same name. Additionally there is the
attr() filter that just looks up attributes.

4.3 Filters

Variables can by modified by filters. Filters are separated from the variable by a pipe symbol (|) and
may have optional arguments in parentheses. Multiple filters can be chained. The output of one filter
is applied to the next.

{{ name|striptags|title }} for example will remove all HTML Tags from the name and title-
cases it. Filters that accept arguments have parentheses around the arguments, like a function call. This
example will join a list by spaces: {{ list|join(’, ’) }}.

The List of Builtin Filters below describes all the builtin filters.

4.4 Tests

Beside filters there are also so called “tests” available. Tests can be used to test a variable against a
common expression. To test a variable or expression you add is plus the name of the test after the
variable. For example to find out if a variable is defined you can do name is defined which will
then return true or false depending on if name is defined.

26 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

Tests can accept arguments too. If the test only takes one argument you can leave out the parentheses
to group them. For example the following two expressions do the same:

{% if loop.index is divisibleby 3 %}
{% if loop.index is divisibleby(3) %}

The List of Builtin Tests below describes all the builtin tests.

4.5 Comments

To comment-out part of a line in a template, use the comment syntax which is by default set to {# ...
#}. This is useful to comment out parts of the template for debugging or to add information for other
template designers or yourself:

{# note: disabled template because we no longer user this
{% for user in users %}

...
{% endfor %}

#}

4.6 Whitespace Control

In the default configuration whitespace is not further modified by the template engine, so each whites-
pace (spaces, tabs, newlines etc.) is returned unchanged. If the application configures Jinja to trim_blocks
the first newline after a a template tag is removed automatically (like in PHP).

But you can also strip whitespace in templates by hand. If you put an minus sign (-) to the start or end
of an block (for example a for tag), a comment or variable expression you can remove the whitespaces
after or before that block:

{% for item in seq -%}
{{ item }}

{%- endfor %}

This will yield all elements without whitespace between them. If seq was a list of numbers from 1 to 9
the output would be 123456789.

If Line Statements are enabled they strip leading whitespace automatically up to the beginning of the
line.

Note

You must not use a whitespace between the tag and the minus sign.

valid:

{%- if foo -%}...{% endif %}

invalid:

{% - if foo - %}...{% endif %}

4.5. Comments 27

Jinja2 Documentation, Release 2.0

4.7 Escaping

It is sometimes desirable or even necessary to have Jinja ignore parts it would otherwise handle as
variables or blocks. For example if the default syntax is used and you want to use {{ as raw string in
the template and not start a variable you have to use a trick.

The easiest way is to output the variable delimiter ({{) by using a variable expression:

{{ ’{{’ }}

For bigger sections it makes sense to mark a block raw. For example to put Jinja syntax as example into
a template you can use this snippet:

{% raw %}

{% for item in seq %}

{{ item }}
{% endfor %}

{% endraw %}

4.8 Line Statements

If line statements are enabled by the application it’s possible to mark a line as a statement. For example
if the line statement prefix is configured to # the following two examples are equivalent:

for item in seq

{{ item }}
endfor

{% for item in seq %}

{{ item }}
{% endfor %}

The line statement prefix can appear anywhere on the line as long as no text precedes it. For better
readability statements that start a block (such as for, if, elif etc.) may end with a colon:

for item in seq:
...

endfor

Note

Line statements can span multiple lines if there are open parentheses, braces or brackets:

for href, caption in [(’index.html’, ’Index’),

(’about.html’, ’About’)]:
{{ caption }}

endfor

28 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

4.9 Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance allows you to build a base
“skeleton” template that contains all the common elements of your site and defines blocks that child
templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting with an example.

4.9.1 Base Template

This template, which we’ll call base.html, defines a simple HTML skeleton document that you might
use for a simple two-column page. It’s the job of “child” templates to fill the empty blocks with content:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

{% block head %}
<link rel="stylesheet" href="style.css" />
<title>{% block title %}{% endblock %} - My Webpage</title>
{% endblock %}

</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}
© Copyright 2008 by you.
{% endblock %}

</div>
</body>

In this example, the {% block %} tags define four blocks that child templates can fill in. All the block
tag does is to tell the template engine that a child template may override those portions of the template.

4.9.2 Child Template

A child template might look like this:

{% extends "base.html" %}
{% block title %}Index{% endblock %}
{% block head %}

{{ super() }}
<style type="text/css">

.important { color: #336699; }
</style>

{% endblock %}
{% block content %}

<h1>Index</h1>
<p class="important">
Welcome on my awsome homepage.

</p>
{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that this template “extends”
another template. When the template system evaluates this template, first it locates the parent. The
extends tag should be the first tag in the template. Everything before it is printed out normally and
may cause confusion. For details about this behavior and how to take advantage of it, see Null-Master
Fallback.

4.9. Template Inheritance 29

Jinja2 Documentation, Release 2.0

The filename of the template depends on the template loader. For example the FileSystemLoader
allows you to access other templates by giving the filename. You can access templates in subdirectories
with an slash:

{% extends "layout/default.html" %}

But this behavior can depend on the application embedding Jinja. Note that since the child template
doesn’t define the footer block, the value from the parent template is used instead.

You can’t define multiple {% block %} tags with the same name in the same template. This limitation
exists because a block tag works in “both” directions. That is, a block tag doesn’t just provide a hole
to fill - it also defines the content that fills the hole in the parent. If there were two similarly-named {%
block %} tags in a template, that template’s parent wouldn’t know which one of the blocks’ content
to use.

If you want to print a block multiple times you can however use the special self variable and call the
block with that name:

<title>{% block title %}{% endblock %}</title>
<h1>{{ self.title() }}</h1>
{% block body %}{% endblock %}

Unlike Python Jinja does not support multiple inheritance. So you can only have one extends tag called
per rendering.

4.9.3 Super Blocks

It’s possible to render the contents of the parent block by calling super. This gives back the results of the
parent block:

{% block sidebar %}
<h3>Table Of Contents</h3>
...
{{ super() }}

{% endblock %}

4.9.4 Named Block End-Tags

Jinja2 allows you to put the name of the block after the end tag for better readability:

{% block sidebar %}
{% block inner_sidebar %}

...
{% endblock inner_sidebar %}

{% endblock sidebar %}

However the name after the endblock word must match the block name.

4.10 HTML Escaping

When generating HTML from templates, there’s always a risk that a variable will include characters that
affect the resulting HTML. There are two approaches: manually escaping each variable or automatically
escaping everything by default.

Jinja supports both, but what is used depends on the application configuration. The default configua-
ration is no automatic escaping for various reasons:

30 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

• escaping everything except of safe values will also mean that Jinja is escaping variables known to
not include HTML such as numbers which is a huge performance hit.

• The information about the safety of a variable is very fragile. It could happen that by coercing
safe and unsafe values the return value is double escaped HTML.

4.10.1 Working with Manual Escaping

If manual escaping is enabled it’s your responsibility to escape variables if needed. What to escape?
If you have a variable that may include any of the following chars (>, <, &, or ") you have to escape
it unless the variable contains well-formed and trusted HTML. Escaping works by piping the variable
through the |e filter: {{ user.username|e }}.

4.10.2 Working with Automatic Escaping

When automatic escaping is enabled everything is escaped by default except for values explicitly
marked as safe. Those can either be marked by the application or in the template by using the |safe
filter. The main problem with this approach is that Python itself doesn’t have the concept of tainted
values so the information if a value is safe or unsafe can get lost. If the information is lost escaping will
take place which means that you could end up with double escaped contents.

Double escaping is easy to avoid however, just rely on the tools Jinja2 provides and don’t use builtin
Python constructs such as the string modulo operator.

Functions returning template data (macros, super, self.BLOCKNAME) return safe markup always.

String literals in templates with automatic escaping are considered unsafe too. The reason for this is
that the safe string is an extension to Python and not every library will work properly with it.

4.11 List of Control Structures

A control structure refers to all those things that control the flow of a program - conditionals (i.e.
if/elif/else), for-loops, as well as things like macros and blocks. Control structures appear inside {%
... %} blocks in the default syntax.

4.11.1 For

Loop over each item in a sequence. For example, to display a list of users provided in a variable called
users:

<h1>Members</h1>

{% for user in users %}

{{ user.username|e }}
{% endfor %}

Inside of a for loop block you can access some special variables:

4.11. List of Control Structures 31

Jinja2 Documentation, Release 2.0

Variable Description
loop.index The current iteration of the loop. (1 indexed)
loop.index0 The current iteration of the loop. (0 indexed)
loop.revindex The number of iterations from the end of the loop (1 indexed)
loop.revindex0 The number of iterations from the end of the loop (0 indexed)
loop.first True if first iteration.
loop.last True if last iteration.
loop.length The number of items in the sequence.
loop.cycle A helper function to cycle between a list of sequences. See the explanation below.

Within a for-loop, it’s possible to cycle among a list of strings/variables each time through the loop by
using the special loop.cycle helper:

{% for row in rows %}
<li class="{{ loop.cycle(’odd’, ’even’) }}">{{ row }}

{% endfor %}

With Jinja 2.1 an extra cycle helper exists that allows loop-unbound cycling. For more information have
a look at the List of Global Functions. Unlike in Python it’s not possible to break or continue in a loop.
You can however filter the sequence during iteration which allows you to skip items. The following
example skips all the users which are hidden:

{% for user in users if not user.hidden %}
{{ user.username|e }}

{% endfor %}

The advantage is that the special loop variable will count correctly thus not counting the users not
iterated over.

If no iteration took place because the sequence was empty or the filtering removed all the items from
the sequence you can render a replacement block by using else:

{% for user in users %}

{{ user.username|e }}
{% else %}

no users found
{% endif %}

It is also possible to use loops recursively. This is useful if you are dealing with recursive data such as
sitemaps. To use loops recursively you basically have to add the recursive modifier to the loop definition
and call the loop variable with the new iterable where you want to recurse.

The following example implements a sitemap with recursive loops:

<ul class="sitemap">
{%- for item in sitemap recursive %}

{{ item.title }}
{%- if item.children -%}

<ul class="submenu">{{ loop(item.children) }}
{%- endif %}

{%- endfor %}

4.11.2 If

The if statement in Jinja is comparable with the if statements of Python. In the simplest form you can
use it to test if a variable is defined, not empty or not false:

32 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

{% if users %}

{% for user in users %}

{{ user.username|e }}
{% endfor %}

{% endif %}

For multiple branches elif and else can be used like in Python. You can use more complex Expressions
there too:

{% if kenny.sick %}
Kenny is sick.

{% elif kenny.dead %}
You killed Kenny! You bastard!!!

{% else %}
Kenny looks okay --- so far

{% endif %}

If can also be used as inline expression and for loop filtering.

4.11.3 Macros

Macros are comparable with functions in regular programming languages. They are useful to put often
used idioms into reusable functions to not repeat yourself.

Here a small example of a macro that renders a form element:

{% macro input(name, value=’’, type=’text’, size=20) -%}
<input type="{{ type }}" name="{{ name }}" value="{{

value|e }}" size="{{ size }}">
{%- endmacro %}

The macro can then be called like a function in the namespace:

<p>{{ input(’username’) }}</p>
<p>{{ input(’password’, type=’password’) }}</p>

If the macro was defined in a different template you have to import it first.

Inside macros you have access to three special variables:

varargs If more positional arguments are passed to the macro than accepted by the macro they end up
in the special varargs variable as list of values.

kwargs Like varargs but for keyword arguments. All unconsumed keyword arguments are stored in
this special variable.

caller If the macro was called from a call tag the caller is stored in this variable as macro which can be
called.

Macros also expose some of their internal details. The following attributes are available on a macro
object:

name The name of the macro. {{ input.name }} will print input.

arguments A tuple of the names of arguments the macro accepts.

defaults A tuple of default values.

4.11. List of Control Structures 33

Jinja2 Documentation, Release 2.0

catch_kwargs This is true if the macro accepts extra keyword arguments (ie: accesses the special kwargs
variable).

catch_varargs This is true if the macro accepts extra positional arguments (ie: accesses the special
varargs variable).

caller This is true if the macro accesses the special caller variable and may be called from a call tag.

If a macro name starts with an underscore it’s not exported and can’t be imported.

4.11.4 Call

In some cases it can be useful to pass a macro to another macro. For this purpose you can use the special
call block. The following example shows a macro that takes advantage of the call functionality and how
it can be used:

{% macro render_dialog(title, class=’dialog’) -%}
<div class="{{ class }}">

<h2>{{ title }}</h2>
<div class="contents">

{{ caller() }}
</div>

</div>
{%- endmacro %}

{% call render_dialog(’Hello World’) %}
This is a simple dialog rendered by using a macro and
a call block.

{% endcall %}

It’s also possible to pass arguments back to the call block. This makes it useful as replacement for loops.
Generally speaking a call block works exactly like an macro, just that it doesn’t have a name.

Here an example of how a call block can be used with arguments:

{% macro dump_users(users) -%}

{%- for user in users %}

<p>{{ user.username|e }}</p>{{ caller(user) }}
{%- endfor %}

{%- endmacro %}

{% call(user) dump_users(list_of_user) %}
<dl>

<dl>Realname</dl>
<dd>{{ user.realname|e }}</dd>
<dl>Description</dl>
<dd>{{ user.description }}</dd>

</dl>
{% endcall %}

4.11.5 Filters

Filter sections allow you to apply regular Jinja2 filters on a block of template data. Just wrap the code
in the special filter section:

{% filter upper %}
This text becomes uppercase

{% endfilter %}

34 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

4.11.6 Assignments

Inside code blocks you can also assign values to variables. Assignments at top level (outside of blocks,
macros or loops) are exported from the template like top level macros and can be imported by other
templates.

Assignments use the set tag and can have multiple targets:

{% set navigation = [(’index.html’, ’Index’), (’about.html’, ’About’)] %}
{% set key, value = call_something() %}

4.11.7 Extends

The extends tag can be used to extend a template from another one. You can have multiple of them in a
file but only one of them may be executed at the time. There is no support for multiple inheritance. See
the section about Template Inheritance above.

4.11.8 Block

Blocks are used for inheritance and act as placeholders and replacements at the same time. They are
documented in detail as part of the section about Template Inheritance.

4.11.9 Include

The include statement is useful to include a template and return the rendered contents of that file into
the current namespace:

{% include ’header.html’ %}
Body

{% include ’footer.html’ %}

Included templates have access to the variables of the active context by default. For more details about
context behavior of imports and includes see Import Context Behavior.

4.11.10 Import

Jinja2 supports putting often used code into macros. These macros can go into different templates and
get imported from there. This works similar to the import statements in Python. It’s important to know
that imports are cached and imported templates don’t have access to the current template variables,
just the globals by defualt. For more details about context behavior of imports and includes see Import
Context Behavior.

There are two ways to import templates. You can import the complete template into a variable or
request specific macros / exported variables from it.

Imagine we have a helper module that renders forms (called forms.html):

{% macro input(name, value=’’, type=’text’) -%}
<input type="{{ type }}" value="{{ value|e }}" name="{{ name }}">

{%- endmacro %}

{%- macro textarea(name, value=’’, rows=10, cols=40) -%}
<textarea name="{{ name }}" rows="{{ rows }}" cols="{{ cols

}}">{{ value|e }}</textarea>
{%- endmacro %}

4.11. List of Control Structures 35

Jinja2 Documentation, Release 2.0

The easiest and most flexible is importing the whole module into a variable. That way you can access
the attributes:

{% import ’forms.html’ as forms %}
<dl>

<dt>Username</dt>
<dd>{{ forms.input(’username’) }}</dd>
<dt>Password</dt>
<dd>{{ forms.input(’password’, type=’password’) }}</dd>

</dl>
<p>{{ forms.textarea(’comment’) }}</p>

Alternatively you can import names from the template into the current namespace:

{% from ’forms.html’ import input as input_field, textarea %}
<dl>

<dt>Username</dt>
<dd>{{ input_field(’username’) }}</dd>
<dt>Password</dt>
<dd>{{ input_field(’password’, type=’password’) }}</dd>

</dl>
<p>{{ textarea(’comment’) }}</p>

Macros and variables starting with one ore more underscores are private and cannot be imported.

4.12 Import Context Behavior

Per default included templates are passed the current context and imported templates not. The reason
for this is that imports unlike includes are cached as imports are often used just as a module that holds
macros.

This however can be changed of course explicitly. By adding with context or without context to the
import/include directive the current context can be passed to the template and caching is disabled
automatically.

Here two examples:

{% from ’forms.html’ import input with context %}
{% include ’header.html’ without context %}

Note

In Jinja 2.0 the context that was passed to the included template did not include variables define in the
template. As a matter of fact this did not work:

{% for box in boxes %}
{% include "render_box.html" %}

{% endfor %}

The included template render_box.html is not able to access box in Jinja 2.0, but in Jinja 2.1.

4.13 Expressions

Jinja allows basic expressions everywhere. These work very similar to regular Python and even if you’re
not working with Python you should feel comfortable with it.

36 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

4.13.1 Literals

The simplest form of expressions are literals. Literals are representations for Python objects such as
strings and numbers. The following literals exist:

“Hello World”: Everything between two double or single quotes is a string. They are useful whenever
you need a string in the template (for example as arguments to function calls, filters or just to
extend or include a template).

42 / 42.23: Integers and floating point numbers are created by just writing the number down. If a dot is
present the number is a float, otherwise an integer. Keep in mind that for Python 42 and 42.0 is
something different.

[’list’, ‘of’, ‘objects’]: Everything between two brackets is a list. Lists are useful to store sequential data
in or to iterate over them. For example you can easily create a list of links using lists and tuples
with a for loop:

{% for href, caption in [(’index.html’, ’Index’), (’about.html’, ’About’),

(’downloads.html’, ’Downloads’)] %}
{{ caption }}

{% endfor %}

(‘tuple’, ‘of’, ‘values’): Tuples are like lists, just that you can’t modify them. If the tuple only has one
item you have to end it with a comma. Tuples are usually used to represent items of two or more
elements. See the example above for more details.

{‘dict’: ‘of’, ‘key’: ‘and’, ‘value’: ‘pairs’}: A dict in Python is a structure that combines keys and values.
Keys must be unique and always have exactly one value. Dicts are rarely used in templates, they
are useful in some rare cases such as the xmlattr() filter.

true / false: true is always true and false is always false.

Note

The special constants true, false and none are indeed lowercase. Because that caused confusion in the
past, when writing True expands to an undefined variable that is considered false, all three of them
can be written in title case too (True, False, and None). However for consistency (all Jinja identifiers are
lowercase) you should use the lowercase versions.

4.13.2 Math

Jinja allows you to calculate with values. This is rarely useful in templates but exists for completeness
sake. The following operators are supported:

+ Adds two objects with each other. Usually numbers but if both objects are strings or lists you can
concatenate them this way. This however is not the preferred way to concatenate strings! For
string concatenation have a look at the ~ operator. {{ 1 + 1 }} is 2.

- Substract two numbers from each other. {{ 3 - 2 }} is 1.

/ Divide two numbers. The return value will be a floating point number. {{ 1 / 2 }} is {{ 0.5
}}.

// Divide two numbers and return the truncated integer result. {{ 20 / 7 }} is 2.

% Calculate the remainder of an integer division between the left and right operand. {{ 11 % 7 }}
is 4.

4.13. Expressions 37

Jinja2 Documentation, Release 2.0

* Multiply the left operand with the right one. {{ 2 * 2 }} would return 4. This can also be used to
repeat string multiple times. {{ ’=’ * 80 }} would print a bar of 80 equal signs.

** Raise the left operand to the power of the right operand. {{ 2**3 }} would return 8.

4.13.3 Logic

For if statements / for filtering or if expressions it can be useful to combine group multiple expressions:

and Return true if the left and the right operand is true.

or Return true if the left or the right operand is true.

not negate a statement (see below).

(expr) group an expression.

Note

The is and in operators support negation using an infix notation too: foo is not bar and foo
not in bar instead of not foo is bar and not foo in bar. All other expressions require a
prefix notation: not (foo and bar).

4.13.4 Other Operators

The following operators are very useful but don’t fit into any of the other two categories:

in Perform sequence / mapping containment test. Returns true if the left operand is contained in the
right. {{ 1 in [1, 2, 3] }} would for example return true.

is Performs a test.

| Applies a filter.

~ Converts all operands into strings and concatenates them. {{ "Hello " ~ name ~ "!" }}
would return (assuming name is ’John’) Hello John!.

() Call a callable: {{ post.render() }}. Inside of the parentheses you can use arguments and
keyword arguments like in python: {{ post.render(user, full=true) }}.

. / [] Get an attribute of an object. (See Variables)

4.13.5 If Expression

It is also possible to use inline if expressions. These are useful in some situations. For example you can
use this to extend from one template if a variable is defined, otherwise from the default layout template:

{% extends layout_template if layout_template is defined else ’master.html’ %}

The general syntax is <do something> if <something is true> else <do something
else>.

The else part is optional. If not provided the else block implicitly evaluates into an undefined object:

{{ ’[%s]’ % page.title if page.title }}

38 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

4.14 List of Builtin Filters

abs(number)
Return the absolute value of the argument.

attr(obj, name)
Get an attribute of an object. foo|attr("bar") works like foo["bar"] just that always an
attribute is returned and items are not looked up.

See Notes on subscriptions for more details.

batch(value, linecount, fill_with=None)
A filter that batches items. It works pretty much like slice just the other way round. It returns a
list of lists with the given number of items. If you provide a second parameter this is used to fill
missing items. See this example:

<table>
{%- for row in items|batch(3, ’ ’) %}
<tr>
{%- for column in row %}

<tr>{{ column }}</td>
{%- endfor %}
</tr>

{%- endfor %}
</table>

capitalize(s)
Capitalize a value. The first character will be uppercase, all others lowercase.

center(value, width=80)
Centers the value in a field of a given width.

default(value, default_value=u”, boolean=False)
If the value is undefined it will return the passed default value, otherwise the value of the variable:

{{ my_variable|default(’my_variable is not defined’) }}

This will output the value of my_variable if the variable was defined, otherwise
’my_variable is not defined’. If you want to use default with variables that evaluate
to false you have to set the second parameter to true:

{{ ’’|default(’the string was empty’, true) }}

Aliases d

dictsort(value, case_sensitive=False, by=’key’)
Sort a dict and yield (key, value) pairs. Because python dicts are unsorted you may want to use
this function to order them by either key or value:

{% for item in mydict|dictsort %}
sort the dict by key, case insensitive

{% for item in mydict|dicsort(true) %}
sort the dict by key, case sensitive

{% for item in mydict|dictsort(false, ’value’) %}
sort the dict by key, case insensitive, sorted
normally and ordered by value.

escape(s)
Convert the characters &, <, >, ‘, and ” in string s to HTML-safe sequences. Use this if you need to
display text that might contain such characters in HTML. Marks return value as markup string.

4.14. List of Builtin Filters 39

Jinja2 Documentation, Release 2.0

Aliases e

filesizeformat(value, binary=False)
Format the value like a ‘human-readable’ file size (i.e. 13 KB, 4.1 MB, 102 bytes, etc). Per default
decimal prefixes are used (mega, giga etc.), if the second parameter is set to True the binary prefixes
are (mebi, gibi).

first(seq)
Return the first item of a sequence.

float(value, default=0.0)
Convert the value into a floating point number. If the conversion doesn’t work it will return 0.0.
You can override this default using the first parameter.

forceescape(value)
Enforce HTML escaping. This will probably double escape variables.

format(value, *args, **kwargs)
Apply python string formatting on an object:

{{ "%s - %s"|format("Hello?", "Foo!") }}
-> Hello? - Foo!

groupby(value, attribute)
Group a sequence of objects by a common attribute.

If you for example have a list of dicts or objects that represent persons with gender, first_name and
last_name attributes and you want to group all users by genders you can do something like the
following snippet:

{% for group in persons|groupby(’gender’) %}

{{ group.grouper }}
{% for person in group.list %}

{{ person.first_name }} {{ person.last_name }}
{% endfor %}

{% endfor %}

Additionally it’s possible to use tuple unpacking for the grouper and list:

{% for grouper, list in persons|groupby(’gender’) %}

...
{% endfor %}

As you can see the item we’re grouping by is stored in the grouper attribute and the list contains
all the objects that have this grouper in common.

indent(s, width=4, indentfirst=False)
Return a copy of the passed string, each line indented by 4 spaces. The first line is not indented.
If you want to change the number of spaces or indent the first line too you can pass additional
parameters to the filter:

{{ mytext|indent(2, true) }}
indent by two spaces and indent the first line too.

int(value, default=0)
Convert the value into an integer. If the conversion doesn’t work it will return 0. You can override
this default using the first parameter.

join(value, d=u”)
Return a string which is the concatenation of the strings in the sequence. The separator between
elements is an empty string per default, you can define it with the optional parameter:

40 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

{{ [1, 2, 3]|join(’|’) }}
-> 1|2|3

{{ [1, 2, 3]|join }}
-> 123

last(seq)
Return the last item of a sequence.

length(object)
Return the number of items of a sequence or mapping.

Aliases count

list(value)
Convert the value into a list. If it was a string the returned list will be a list of characters.

lower(s)
Convert a value to lowercase.

pprint(value, verbose=False)
Pretty print a variable. Useful for debugging.

With Jinja 1.2 onwards you can pass it a parameter. If this parameter is truthy the output will be
more verbose (this requires pretty)

random(seq)
Return a random item from the sequence.

replace(s, old, new, count=None)
Return a copy of the value with all occurrences of a substring replaced with a new one. The first
argument is the substring that should be replaced, the second is the replacement string. If the
optional third argument count is given, only the first count occurrences are replaced:

{{ "Hello World"|replace("Hello", "Goodbye") }}
-> Goodbye World

{{ "aaaaargh"|replace("a", "d’oh, ", 2) }}
-> d’oh, d’oh, aaargh

reverse(value)
Reverse the object or return an iterator the iterates over it the other way round.

round(value, precision=0, method=’common’)
Round the number to a given precision. The first parameter specifies the precision (default is 0),
the second the rounding method:

•’common’ rounds either up or down

•’ceil’ always rounds up

•’floor’ always rounds down

If you don’t specify a method ’common’ is used.

{{ 42.55|round }}
-> 43

{{ 42.55|round(1, ’floor’) }}
-> 42.5

safe(value)
Mark the value as safe which means that in an environment with automatic escaping enabled this
variable will not be escaped.

4.14. List of Builtin Filters 41

Jinja2 Documentation, Release 2.0

slice(value, slices, fill_with=None)
Slice an iterator and return a list of lists containing those items. Useful if you want to create a div
containing three div tags that represent columns:

<div class="columwrapper">
{%- for column in items|slice(3) %}
<ul class="column-{{ loop.index }}">
{%- for item in column %}
{{ item }}

{%- endfor %}

{%- endfor %}
</div>

If you pass it a second argument it’s used to fill missing values on the last iteration.

sort(value, reverse=False)
Sort a sequence. Per default it sorts ascending, if you pass it true as first argument it will reverse
the sorting.

string(object)
Make a string unicode if it isn’t already. That way a markup string is not converted back to
unicode.

striptags(value)
Strip SGML/XML tags and replace adjacent whitespace by one space.

sum(sequence, [start])
Returns the sum of a sequence of numbers (NOT strings) plus the value of parameter ‘start’ (which
defaults to 0). When the sequence is empty, returns start.

title(s)
Return a titlecased version of the value. I.e. words will start with uppercase letters, all remaining
characters are lowercase.

trim(value)
Strip leading and trailing whitespace.

truncate(s, length=255, killwords=False, end=’...’)
Return a truncated copy of the string. The length is specified with the first parameter which de-
faults to 255. If the second parameter is true the filter will cut the text at length. Otherwise it will
try to save the last word. If the text was in fact truncated it will append an ellipsis sign ("...").
If you want a different ellipsis sign than "..." you can specify it using the third parameter.

upper(s)
Convert a value to uppercase.

urlize(value, trim_url_limit=None, nofollow=False)
Converts URLs in plain text into clickable links.

If you pass the filter an additional integer it will shorten the urls to that number. Also a third
argument exists that makes the urls “nofollow”:

{{ mytext|urlize(40, true) }}
links are shortened to 40 chars and defined with rel="nofollow"

wordcount(s)
Count the words in that string.

wordwrap(s, width=79, break_long_words=True)
Return a copy of the string passed to the filter wrapped after 79 characters. You can override this
default using the first parameter. If you set the second parameter to false Jinja will not split words
apart if they are longer than width.

xmlattr(d, autospace=True)
Create an SGML/XML attribute string based on the items in a dict. All values that are neither

42 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

none nor undefined are automatically escaped:

<ul{{ {’class’: ’my_list’, ’missing’: none,
’id’: ’list-%d’|format(variable)}|xmlattr }}>

...

Results in something like this:

<ul class="my_list" id="list-42">
...

As you can see it automatically prepends a space in front of the item if the filter returned some-
thing unless the second parameter is false.

4.15 List of Builtin Tests

callable(object)
Return whether the object is callable (i.e., some kind of function). Note that classes are callable, as
are instances with a __call__() method.

defined(value)
Return true if the variable is defined:

{% if variable is defined %}
value of variable: {{ variable }}

{% else %}
variable is not defined

{% endif %}

See the default() filter for a simple way to set undefined variables.

divisibleby(value, num)
Check if a variable is divisible by a number.

escaped(value)
Check if the value is escaped.

even(value)
Return true if the variable is even.

iterable(value)
Check if it’s possible to iterate over an object.

lower(value)
Return true if the variable is lowercased.

none(value)
Return true if the variable is none.

number(value)
Return true if the variable is a number.

odd(value)
Return true if the variable is odd.

sameas(value, other)
Check if an object points to the same memory address than another object:

{% if foo.attribute is sameas false %}
the foo attribute really is the ‘False‘ singleton

{% endif %}

4.15. List of Builtin Tests 43

Jinja2 Documentation, Release 2.0

sequence(value)
Return true if the variable is a sequence. Sequences are variables that are iterable.

string(value)
Return true if the object is a string.

undefined(value)
Like defined() but the other way round.

upper(value)
Return true if the variable is uppercased.

4.16 List of Global Functions

The following functions are available in the global scope by default:

range([start], stop, [step])
Return a list containing an arithmetic progression of integers. range(i, j) returns [i, i+1, i+2, ..., j-1];
start (!) defaults to 0. When step is given, it specifies the increment (or decrement). For example,
range(4) returns [0, 1, 2, 3]. The end point is omitted! These are exactly the valid indices for a list
of 4 elements.
This is useful to repeat a template block multiple times for example to fill a list. Imagine you have
7 users in the list but you want to render three empty items to enforce a height with CSS:

{% for user in users %}

{{ user.username }}
{% endfor %}
{% for number in range(10 - users|count) %}

<li class="empty">...
{% endfor %}

lipsum(n=5, html=True, min=20, max=100)
Generates some lorem ipsum for the template. Per default five paragraphs with HTML are gener-
ated each paragraph between 20 and 100 words. If html is disabled regular text is returned. This
is useful to generate simple contents for layout testing.

dict(**items)
A convenient alternative to dict literals. {’foo’: ’bar’} is the same as dict(foo=’bar’).

class cycler(*items)
The cycler allows you to cycle among values similar to how loop.cycle works. Unlike loop.cycle
however you can use this cycler outside of loops or over multiple loops.
This is for example very useful if you want to show a list of folders and files, with the folders on
top, but both in the same list with alteranting row colors.
The following example shows how cycler can be used:

{% set row_class = cycler(’odd’, ’even’) %}
<ul class="browser">
{% for folder in folders %}
<li class="folder {{ row_class.next() }}">{{ folder|e }}

{% endfor %}
{% for filename in files %}
<li class="file {{ row_class.next() }}">{{ filename|e }}

{% endfor %}

A cycler has the following attributes and methods:
reset()

Resets the cycle to the first item.

44 Chapter 4. Template Designer Documentation

Jinja2 Documentation, Release 2.0

next()
Goes one item a head and returns the then current item.

current
Returns the current item.

new in Jinja 2.1

class joiner(sep=’, ’)
A tiny helper that can be use to “join” multiple sections. A joiner is passed a string and will return
that string every time it’s calld, except the first time in which situation it returns an empty string.
You can use this to join things:

{% set pipe = joiner("|") %}
{% if categories %} {{ pipe() }}

Categories: {{ categories|join(", ") }}
{% endif %}
{% if author %} {{ pipe() }}

Author: {{ author() }}
{% endif %}
{% if can_edit %} {{ pipe() }}

Edit
{% endif %}

new in Jinja 2.1

4.17 Extensions

The following sections cover the built-in Jinja2 extensions that may be enabled by the application. The
application could also provide further extensions not covered by this documentation. In that case there
should be a separate document explaining the extensions.

4.17.1 i18n

If the i18n extension is enabled it’s possible to mark parts in the template as translatable. To mark a
section as translatable you can use trans:

<p>{% trans %}Hello {{ user }}!{% endtrans %}</p>

To translate a template expression — say, using template filters or just accessing an attribute of an object
— you need to bind the expression to a name for use within the translation block:

<p>{% trans user=user.username %}Hello {{ user }}!{% endtrans %}</p>

If you need to bind more than one expression inside a trans tag, separate the pieces with a comma (,):

{% trans book_title=book.title, author=author.name %}
This is {{ book_title }} by {{ author }}
{% endtrans %}

Inside trans tags no statements are allowed, only variable tags are.

To pluralize, specify both the singular and plural forms with the pluralize tag, which appears between
trans and endtrans:

{% trans count=list|length %}
There is {{ count }} {{ name }} object.
{% pluralize %}
There are {{ count }} {{ name }} objects.
{% endtrans %}

4.17. Extensions 45

Jinja2 Documentation, Release 2.0

Per default the first variable in a block is used to determine the correct singular or plural form. If
that doesn’t work out you can specify the name which should be used for pluralizing by adding it as
parameter to pluralize:

{% trans ..., user_count=users|length %}...
{% pluralize user_count %}...{% endtrans %}

It’s also possible to translate strings in expressions. For that purpose three functions exist:

_ gettext: translate a single string - ngettext: translate a pluralizable string - _: alias for gettext

For example you can print a translated string easily this way:

{{ _(’Hello World!’) }}

To use placeholders you can use the format filter:

{{ _(’Hello %(user)s!’)|format(user=user.username) }}
or

{{ _(’Hello %s’)|format(user.username) }}

For multiple placeholders always use keyword arguments to format as other languages may not use the
words in the same order.

4.17.2 Expression Statement

If the expression-statement extension is loaded a tag called do is available that works exactly like the reg-
ular variable expression ({{ ... }}) just that it doesn’t print anything. This can be used to modify
lists:

{% do navigation.append(’a string’) %}

4.17.3 Loop Controls

If the application enables the Loop Controls it’s possible to use break and continue in loops. When break is
reached, the loop is terminated, if continue is eached the processing is stopped and continues with the
next iteration.

Here a loop that skips every second item:

{% for user in users %}
{%- if loop.index is even %}{% continue %}{% endif %}
...

{% endfor %}

Likewise a look that stops processing after the 10th iteration:

{% for user in users %}
{%- if loop.index >= 10 %}{% break %}{% endif %}

{%- endfor %}

46 Chapter 4. Template Designer Documentation

CHAPTER

FIVE

EXTENSIONS

Jinja2 supports extensions that can add extra filters, tests, globals or even extend the parser. The main
motivation of extensions is it to move often used code into a reusable class like adding support for
internationalization.

5.1 Adding Extensions

Extensions are added to the Jinja2 environment at creation time. Once the environment is created addi-
tional extensions cannot be added. To add an extension pass a list of extension classes or import paths
to the environment parameter of the Environment constructor. The following example creates a Jinja2
environment with the i18n extension loaded:

jinja_env = Environment(extensions=[’jinja2.ext.i18n’])

5.2 i18n Extension

Import name: jinja2.ext.i18n

Jinja2 currently comes with one extension, the i18n extension. It can be used in combination with gettext
or babel. If the i18n extension is enabled Jinja2 provides a trans statement that marks the wrapped string
as translatable and calls gettext.

After enabling dummy _ function that forwards calls to gettext is added to the environment globals. An
internationalized application then has to provide at least an gettext and optoinally a ngettext function
into the namespace. Either globally or for each rendering.

After enabling of the extension the environment provides the following additional methods:

install_gettext_translations(translations)
Installs a translation globally for that environment. The tranlations object provided must im-
plement at least ugettext and ungettext. The gettext.NullTranslations and gettext.GNUTranslations
classes as well as Babels Translations class are supported.

install_null_translations()
Install dummy gettext functions. This is useful if you want to prepare the application for interna-
tionalization but don’t want to implement the full internationalization system yet.

uninstall_gettext_translations()
Uninstall the translations again.

extract_translations(source)
Extract localizable strings from the given template node or source.

For every string found this function yields a (lineno, function, message) tuple, where:

•lineno is the number of the line on which the string was found,

47

http://docs.python.org/dev/library/gettext
http://babel.edgewall.org/
http://babel.edgewall.org/

Jinja2 Documentation, Release 2.0

•function is the name of the gettext function used (if the string was extracted from embedded
Python code), and

•message is the string itself (a unicode object, or a tuple of unicode objects for functions with
multiple string arguments).

If Babel is installed the babel integration can be used to extract strings for babel.

For a web application that is available in multiple languages but gives all the users the same language
(for example a multilingual forum software installed for a French community) may load the translations
once and add the translation methods to the environment at environment generation time:

translations = get_gettext_translations()
env = Environment(extensions=[’jinja2.ext.i18n’])
env.install_gettext_translations(translations)

The get_gettext_translations function would return the translator for the current configuration. (For ex-
ample by using gettext.find)

The usage of the i18n extension for template designers is covered as part of the template documentation.

5.3 Expression Statement

Import name: jinja2.ext.do

The “do” aka expression-statement extension adds a simple do tag to the template engine that works
like a variable expression but ignores the return value.

5.4 Loop Controls

Import name: jinja2.ext.loopcontrols

This extension adds support for break and continue in loops. After enabling Jinja2 provides those two
keywords which work exactly like in Python.

5.5 Writing Extensions

By writing extensions you can add custom tags to Jinja2. This is a non trival task and usually not needed
as the default tags and expressions cover all common use cases. The i18n extension is a good example
of why extensions are useful, another one would be fragment caching.

When writing extensions you have to keep in mind that you are working with the Jinja2 template
compiler which does not validate the node tree you are possing to it. If the AST is malformed you will
get all kinds of compiler or runtime errors that are horrible to debug. Always make sure you are using
the nodes you create correctly. The API documentation below shows which nodes exist and how to use
them.

5.5.1 Example Extension

The following example implements a cache tag for Jinja2 by using the Werkzeug caching contrib module:

from jinja2 import nodes
from jinja2.ext import Extension

class FragmentCacheExtension(Extension):

48 Chapter 5. Extensions

http://babel.edgewall.org/
http://werkzeug.pocoo.org/

Jinja2 Documentation, Release 2.0

a set of names that trigger the extension.
tags = set([’cache’])

def __init__(self, environment):
super(FragmentCacheExtension, self).__init__(environment)

add the defaults to the environment
environment.extend(

fragment_cache_prefix=’’,
fragment_cache=None

)

def parse(self, parser):
the first token is the token that started the tag. In our case
we only listen to ‘‘’cache’‘‘ so this will be a name token with
‘cache‘ as value. We get the line number so that we can give
that line number to the nodes we create by hand.
lineno = parser.stream.next().lineno

now we parse a single expression that is used as cache key.
args = [parser.parse_expression()]

if there is a comma, the user provided a timeout. If not use
None as second parameter.
if parser.stream.skip_if(’comma’):

args.append(parser.parse_expression())
else:

args.append(nodes.Const(None))

now we parse the body of the cache block up to ‘endcache‘ and
drop the needle (which would always be ‘endcache‘ in that case)
body = parser.parse_statements([’name:endcache’], drop_needle=True)

now return a ‘CallBlock‘ node that calls our _cache_support
helper method on this extension.
return nodes.CallBlock(self.call_method(’_cache_support’, args),

[], [], body).set_lineno(lineno)

def _cache_support(self, name, timeout, caller):
"""Helper callback."""
key = self.environment.fragment_cache_prefix + name

try to load the block from the cache
if there is no fragment in the cache, render it and store
it in the cache.
rv = self.environment.fragment_cache.get(key)
if rv is None:

return rv
rv = caller()
self.environment.fragment_cache.add(key, rv, timeout)

return rv

And here is how you use it in an environment:

from jinja2 import Environment
from werkzeug.contrib.cache import SimpleCache

env = Environment(extensions=[FragmentCacheExtension])
env.fragment_cache = SimpleCache()

Inside the template it’s then possible to mark blocks as cacheable. The following example caches a
sidebar for 300 seconds:

5.5. Writing Extensions 49

Jinja2 Documentation, Release 2.0

{% cache ’sidebar’, 300 %}
<div class="sidebar">

...
</div>
{% endcache %}

5.5.2 Extension API

Extensions always have to extend the jinja2.ext.Extension class:

class Extension(environment)
Extensions can be used to add extra functionality to the Jinja template system at the parser level.
Custom extensions are bound to an environment but may not store environment specific data on
self. The reason for this is that an extension can be bound to another environment (for overlays)
by creating a copy and reassigning the environment attribute.

As extensions are created by the environment they cannot accept any arguments for configura-
tion. One may want to work around that by using a factory function, but that is not possible
as extensions are identified by their import name. The correct way to configure the extension is
storing the configuration values on the environment. Because this way the environment ends up
acting as central configuration storage the attributes may clash which is why extensions have to
ensure that the names they choose for configuration are not too generic. prefix for example is
a terrible name, fragment_cache_prefix on the other hand is a good name as includes the
name of the extension (fragment cache).

identifier
The identifier of the extension. This is always the true import name of the extension class
and must not be changed.

tags
If the extension implements custom tags this is a set of tag names the extension is listening
for.

preprocess(source, name, filename=None)
This method is called before the actual lexing and can be used to preprocess the source. The
filename is optional. The return value must be the preprocessed source.

filter_stream(stream)
It’s passed a TokenStream that can be used to filter tokens returned. This method has to
return an iterable of Tokens, but it doesn’t have to return a TokenStream.
In the ext folder of the Jinja2 source distribution there is a file called inlinegettext.py which
implements a filter that utilizes this method.

parse(parser)
If any of the tags matched this method is called with the parser as first argument. The token
the parser stream is pointing at is the name token that matched. This method has to return
one or a list of multiple nodes.

attr(name, lineno=None)
Return an attribute node for the current extension. This is useful to pass constants on exten-
sions to generated template code:

self.attr(’_my_attribute’, lineno=lineno)

call_method(name, args=None, kwargs=None, dyn_args=None, dyn_kwargs=None, lineno=None)
Call a method of the extension. This is a shortcut for attr() + jinja2.nodes.Call.

5.5.3 Parser API

The parser passed to Extension.parse() provides ways to parse expressions of different types. The
following methods may be used by extensions:

50 Chapter 5. Extensions

Jinja2 Documentation, Release 2.0

class Parser(environment, source, name=None, filename=None, state=None)
This is the central parsing class Jinja2 uses. It’s passed to extensions and can be used to parse
expressions or statements.

filename
The filename of the template the parser processes. This is not the load name of the template.
For the load name see name. For templates that were not loaded form the file system this is
None.

name
The load name of the template.

stream
The current TokenStream

parse_expression(with_condexpr=True)
Parse an expression. Per default all expressions are parsed, if the optional with_condexpr
parameter is set to False conditional expressions are not parsed.

parse_tuple(simplified=False, with_condexpr=True, extra_end_rules=None)
Works like parse_expression but if multiple expressions are delimited by a comma a Tuple
node is created. This method could also return a regular expression instead of a tuple if no
commas where found.
The default parsing mode is a full tuple. If simplified is True only names and literals are
parsed. The no_condexpr parameter is forwarded to parse_expression().
Because tuples do not require delimiters and may end in a bogus comma an extra hint is
needed that marks the end of a tuple. For example for loops support tuples between for and
in. In that case the extra_end_rules is set to [’name:in’].

parse_assign_target(with_tuple=True, name_only=False, extra_end_rules=None)
Parse an assignment target. As Jinja2 allows assignments to tuples, this function can parse all
allowed assignment targets. Per default assignments to tuples are parsed, that can be disable
however by setting with_tuple to False. If only assignments to names are wanted name_only
can be set to True. The extra_end_rules parameter is forwarded to the tuple parsing function.

parse_statements(end_tokens, drop_needle=False)
Parse multiple statements into a list until one of the end tokens is reached. This is used to
parse the body of statements as it also parses template data if appropriate. The parser checks
first if the current token is a colon and skips it if there is one. Then it checks for the block end
and parses until if one of the end_tokens is reached. Per default the active token in the stream
at the end of the call is the matched end token. If this is not wanted drop_needle can be set to
True and the end token is removed.

free_identifier(lineno=None)
Return a new free identifier as InternalName.

fail(msg, lineno=None, exc=<class ’jinja2.exceptions.TemplateSyntaxError’>)
Convenience method that raises exc with the message, passed line number or last line number
as well as the current name and filename.

class TokenStream(generator, name, filename)
A token stream is an iterable that yields Tokens. The parser however does not iterate over it but
calls next() to go one token ahead. The current active token is stored as current.

current
The current Token.

push(token)
Push a token back to the stream.

look()
Look at the next token.

eos
Are we at the end of the stream?

skip(n=1)
Got n tokens ahead.

5.5. Writing Extensions 51

Jinja2 Documentation, Release 2.0

next()
Go one token ahead and return the old one

next_if(expr)
Perform the token test and return the token if it matched. Otherwise the return value is None.

skip_if(expr)
Like next_if() but only returns True or False.

expect(expr)
Expect a given token type and return it. This accepts the same argument as
jinja2.lexer.Token.test().

class Token()
Token class.

lineno
The line number of the token

type
The type of the token. This string is interned so you may compare it with arbitrary strings
using the is operator.

value
The value of the token.

test(expr)
Test a token against a token expression. This can either be a token type or
’token_type:token_value’. This can only test against string values and types.

test_any(*iterable)
Test against multiple token expressions.

There is also a utility function in the lexer module that can count newline characters in strings:

count_newlines(value)
Count the number of newline characters in the string. This is useful for extensions that filter a
stream.

5.5.4 AST

The AST (Abstract Syntax Tree) is used to represent a template after parsing. It’s build of nodes that the
compiler then converts into executable Python code objects. Extensions that provide custom statements
can return nodes to execute custom Python code.

The list below describes all nodes that are currently available. The AST may change between Jinja2
versions but will stay backwards compatible.

For more information have a look at the repr of jinja2.Environment.parse().

class Node()
Baseclass for all Jinja2 nodes. There are a number of nodes available of different types. There are
three major types:

•Stmt: statements

•Expr: expressions

•Helper: helper nodes

•Template: the outermost wrapper node

All nodes have fields and attributes. Fields may be other nodes, lists, or arbitrary values. Fields are
passed to the constructor as regular positional arguments, attributes as keyword arguments. Each
node has two attributes: lineno (the line number of the node) and environment. The environment
attribute is set at the end of the parsing process for all nodes automatically.

find(node_type)
Find the first node of a given type. If no such node exists the return value is None.

52 Chapter 5. Extensions

Jinja2 Documentation, Release 2.0

find_all(node_type)
Find all the nodes of a given type.

iter_child_nodes(exclude=None, only=None)
Iterates over all direct child nodes of the node. This iterates over all fields and yields the
values of they are nodes. If the value of a field is a list all the nodes in that list are returned.

iter_fields(exclude=None, only=None)
This method iterates over all fields that are defined and yields (key, value) tuples. Per
default all fields are returned, but it’s possible to limit that to some fields by providing the
only parameter or to exclude some using the exclude parameter. Both should be sets or tuples
of field names.

set_ctx(ctx)
Reset the context of a node and all child nodes. Per default the parser will all generate nodes
that have a ‘load’ context as it’s the most common one. This method is used in the parser to
set assignment targets and other nodes to a store context.

set_environment(environment)
Set the environment for all nodes.

set_lineno(lineno, override=False)
Set the line numbers of the node and children.

class Expr()
Baseclass for all expressions.

Node type Node

as_const()
Return the value of the expression as constant or raise Impossible if this was not possible:

>>> Add(Const(23), Const(42)).as_const()
65
>>> Add(Const(23), Name(’var’, ’load’)).as_const()
Traceback (most recent call last):

...
Impossible

This requires the environment attribute of all nodes to be set to the environment that created
the nodes.

can_assign()
Check if it’s possible to assign something to this node.

class BinExpr(left, right)
Baseclass for all binary expressions.

Node type Expr

class Add(left, right)
Add the left to the right node.

Node type BinExpr

class And(left, right)
Short circuited AND.

Node type BinExpr

class Div(left, right)
Divides the left by the right node.

Node type BinExpr

class FloorDiv(left, right)
Divides the left by the right node and truncates conver the result into an integer by truncating.

Node type BinExpr

5.5. Writing Extensions 53

Jinja2 Documentation, Release 2.0

class Mod(left, right)
Left modulo right.

Node type BinExpr

class Mul(left, right)
Multiplies the left with the right node.

Node type BinExpr

class Or(left, right)
Short circuited OR.

Node type BinExpr

class Pow(left, right)
Left to the power of right.

Node type BinExpr

class Sub(left, right)
Substract the right from the left node.

Node type BinExpr

class Call(node, args, kwargs, dyn_args, dyn_kwargs)
Calls an expression. args is a list of arguments, kwargs a list of keyword arguments (list of Keyword
nodes), and dyn_args and dyn_kwargs has to be either None or a node that is used as node for
dynamic positional (*args) or keyword (**kwargs) arguments.

Node type Expr

class Compare(expr, ops)
Compares an expression with some other expressions. ops must be a list of Operands.

Node type Expr

class Concat(nodes)
Concatenates the list of expressions provided after converting them to unicode.

Node type Expr

class CondExpr(test, expr1, expr2)
A conditional expression (inline if expression). ({{ foo if bar else baz }})

Node type Expr

class ContextReference()
Returns the current template context.

Node type Expr

class EnvironmentAttribute(name)
Loads an attribute from the environment object. This is useful for extensions that want to call a
callback stored on the environment.

Node type Expr

class ExtensionAttribute(identifier, name)
Returns the attribute of an extension bound to the environment. The identifier is the identifier of
the Extension.

This node is usually constructed by calling the attr() method on an extension.

Node type Expr

54 Chapter 5. Extensions

Jinja2 Documentation, Release 2.0

class Filter(node, name, args, kwargs, dyn_args, dyn_kwargs)
This node applies a filter on an expression. name is the name of the filter, the rest of the fields are
the same as for Call.

If the node of a filter is None the contents of the last buffer are filtered. Buffers are created by
macros and filter blocks.

Node type Expr

class Getattr(node, attr, ctx)
Get an attribute or item from an expression that is a ascii-only bytestring and prefer the attribute.

Node type Expr

class Getitem(node, arg, ctx)
Get an attribute or item from an expression and prefer the item.

Node type Expr

class ImportedName(importname)
If created with an import name the import name is returned on node access. For example
ImportedName(’cgi.escape’) returns the escape function from the cgi module on evaluation.
Imports are optimized by the compiler so there is no need to assign them to local variables.

Node type Expr

class InternalName(name)
An internal name in the compiler. You cannot create these nodes yourself but the parser provides a
free_identifier()method that creates a new identifier for you. This identifier is not available
from the template and is not threated specially by the compiler.

Node type Expr

class Literal()
Baseclass for literals.

Node type Expr

class Const(value)
All constant values. The parser will return this node for simple constants such as 42 or "foo"
but it can be used to store more complex values such as lists too. Only constants with a safe
representation (objects where eval(repr(x)) == x is true).

Node type Literal

class Dict(items)
Any dict literal such as {1: 2, 3: 4}. The items must be a list of Pair nodes.

Node type Literal

class List(items)
Any list literal such as [1, 2, 3]

Node type Literal

class TemplateData(data)
A constant template string.

Node type Literal

class Tuple(items, ctx)
For loop unpacking and some other things like multiple arguments for subscripts. Like for Name
ctx specifies if the tuple is used for loading the names or storing.

Node type Literal

5.5. Writing Extensions 55

Jinja2 Documentation, Release 2.0

class MarkSafe(expr)
Mark the wrapped expression as safe (wrap it as Markup).

Node type Expr

class Name(name, ctx)
Looks up a name or stores a value in a name. The ctx of the node can be one of the following
values:

•store: store a value in the name

•load: load that name

•param: like store but if the name was defined as function parameter.

Node type Expr

class Slice(start, stop, step)
Represents a slice object. This must only be used as argument for Subscript.

Node type Expr

class Test(node, name, args, kwargs, dyn_args, dyn_kwargs)
Applies a test on an expression. name is the name of the test, the rest of the fields are the same as
for Call.

Node type Expr

class UnaryExpr(node)
Baseclass for all unary expressions.

Node type Expr

class Neg(node)
Make the expression negative.

Node type UnaryExpr

class Not(node)
Negate the expression.

Node type UnaryExpr

class Pos(node)
Make the expression positive (noop for most expressions)

Node type UnaryExpr

class Helper()
Nodes that exist in a specific context only.

Node type Node

class Keyword(key, value)
A key, value pair for keyword arguments where key is a string.

Node type Helper

class Operand(op, expr)
Holds an operator and an expression. The following operators are available: %, **, *, +, -, //, /,
eq, gt, gteq, in, lt, lteq, ne, not, notin

Node type Helper

class Pair(key, value)
A key, value pair for dicts.

56 Chapter 5. Extensions

Jinja2 Documentation, Release 2.0

Node type Helper

class Stmt()
Base node for all statements.

Node type Node

class Assign(target, node)
Assigns an expression to a target.

Node type Stmt

class Block(name, body)
A node that represents a block.

Node type Stmt

class Break()
Break a loop.

Node type Stmt

class CallBlock(call, args, defaults, body)
Like a macro without a name but a call instead. call is called with the unnamed macro as caller
argument this node holds.

Node type Stmt

class Continue()
Continue a loop.

Node type Stmt

class ExprStmt(node)
A statement that evaluates an expression and discards the result.

Node type Stmt

class Extends(template)
Represents an extends statement.

Node type Stmt

class FilterBlock(body, filter)
Node for filter sections.

Node type Stmt

class For(target, iter, body, else_, test, recursive)
The for loop. target is the target for the iteration (usually a Name or Tuple), iter the iterable. body
is a list of nodes that are used as loop-body, and else_ a list of nodes for the else block. If no else
node exists it has to be an empty list.

For filtered nodes an expression can be stored as test, otherwise None.

Node type Stmt

class FromImport(template, names, with_context)
A node that represents the from import tag. It’s important to not pass unsafe names to the name
attribute. The compiler translates the attribute lookups directly into getattr calls and does not use
the subscript callback of the interface. As exported variables may not start with double under-
scores (which the parser asserts) this is not a problem for regular Jinja code, but if this node is
used in an extension extra care must be taken.

The list of names may contain tuples if aliases are wanted.

Node type Stmt

5.5. Writing Extensions 57

Jinja2 Documentation, Release 2.0

class If(test, body, else_)
If test is true, body is rendered, else else_.

Node type Stmt

class Import(template, target, with_context)
A node that represents the import tag.

Node type Stmt

class Include(template, with_context)
A node that represents the include tag.

Node type Stmt

class Macro(name, args, defaults, body)
A macro definition. name is the name of the macro, args a list of arguments and defaults a list of
defaults if there are any. body is a list of nodes for the macro body.

Node type Stmt

class Output(nodes)
A node that holds multiple expressions which are then printed out. This is used both for the print
statement and the regular template data.

Node type Stmt

class Template(body)
Node that represents a template. This must be the outermost node that is passed to the compiler.

Node type Node

exception Impossible
Raised if the node could not perform a requested action.

58 Chapter 5. Extensions

CHAPTER

SIX

INTEGRATION

Jinja2 provides some code for integration into other tools such as frameworks, the Babel library or your
favourite editor for fancy code highlighting. This is a brief description of whats included.

6.1 Babel Integration

Jinja provides support for extracting gettext messages from templates via a Babel extractor entry point
called jinja2.ext.babel_extract. The Babel support is implemented as part of the i18n Extension extension.

Gettext messages extracted from both trans tags and code expressions.

To extract gettext messages from templates, the project needs a Jinja2 section in its Babel extraction
method mapping file:

[jinja2: **/templates/**.html]
encoding = utf-8

The syntax related options of the Environment are also available as configuration values in the map-
ping file. For example to tell the extraction that templates use % as line_statement_prefix you can use this
code:

[jinja2: **/templates/**.html]
encoding = utf-8
line_statement_prefix = %

Extensions may also be defined by passing a comma separated list of import paths as extensions value.
The i18n extension is added automatically.

6.2 Pylons

With Pylons 0.9.7 onwards it’s incredible easy to integrate Jinja into a Pylons powered application.

The template engine is configured in config/environment.py. The configuration for Jinja2 looks something
like that:

from jinja2 import Environment, PackageLoader
config[’pylons.app_globals’].jinja_env = Environment(

loader=PackageLoader(’yourapplication’, ’templates’)
)

After that you can render Jinja templates by using the render_jinja function from the pylons.templating
module.

59

http://babel.edgewall.org/
http://babel.edgewall.org/
http://babel.edgewall.org/wiki/Documentation/messages.html#extraction-method-mapping-and-configuration
http://www.pylonshq.com/

Jinja2 Documentation, Release 2.0

Additionally it’s a good idea to set the Pylons’ c object into strict mode. Per default any attribute to not
existing attributes on the c object return an empty string and not an undefined object. To change this
just use this snippet and add it into your config/environment.py:

config[’pylons.strict_c’] = True

6.3 TextMate

Inside the ext folder of Jinja2 there is a bundle for TextMate that supports syntax highlighting for Jinja1
and Jinja2 for text based templates as well as HTML. It also contains a few often used snippets.

6.4 Vim

A syntax plugin for Vim exists in the Vim-scripts directory as well as the ext folder of Jinja2. The script
supports Jinja1 and Jinja2. Once installed two file types are available jinja and htmljinja. The first one
for text based templates, the latter for HTML templates.

Copy the files into your syntax folder.

60 Chapter 6. Integration

http://www.vim.org/
http://www.vim.org/scripts/script.php?script_id=1856

CHAPTER

SEVEN

SWITCHING FROM OTHER TEMPLATE
ENGINES

If you have used a different template engine in the past and want to swtich to Jinja2 here is a small
guide that shows the basic syntatic and semantic changes between some common, similar text template
engines for Python.

7.1 Jinja1

Jinja2 is mostly compatible with Jinja1 in terms of API usage and template syntax. The differences
between Jinja1 and 2 are explained in the following list.

7.1.1 API

Loaders Jinja2 uses a different loader API. Because the internal representation of templates changed
there is no longer support for external caching systems such as memcached. The memory con-
sumed by templates is comparable with regular Python modules now and external caching
doesn’t give any advantage. If you have used a custom loader in the past have a look at the
new loader API.

Loading templates from strings In the past it was possible to generate templates from a string with
the default environment configuration by using jinja.from_string. Jinja2 provides a Template
class that can be used to do the same, but with optional additional configuration.

Automatic unicode conversion Jinja1 performed automatic conversion of bytestrings in a given en-
coding into unicode objects. This conversion is no longer implemented as it was inconsistent as
most libraries are using the regular Python ASCII bytestring to Unicode conversion. An applica-
tion powered by Jinja2 has to use unicode internally everywhere or make sure that Jinja2 only gets
unicode strings passed.

i18n Jinja1 used custom translators for internationalization. i18n is now available as Jinja2 extension
and uses a simpler, more gettext friendly interface and has support for babel. For more details see
i18n Extension.

Internal methods Jinja1 exposed a few internal methods on the environment object such as
call_function, get_attribute and others. While they were marked as being an internal method it
was possible to override them. Jinja2 doesn’t have equivalent methods.

Sandbox Jinja1 was running sandbox mode by default. Few applications actually used that fea-
ture so it became optional in Jinja2. For more details about the sandboxed execution see
SandboxedEnvironment.

Context Jinja1 had a stacked context as storage for variables passed to the environment. In Jinja2 a
similar object exists but it doesn’t allow modifications nor is it a singleton. As inheritance is
dynamic now multiple context objects may exist during template evaluation.

61

Jinja2 Documentation, Release 2.0

Filters and Tests Filters and tests are regular functions now. It’s no longer necessary and allowed to
use factory functions.

7.1.2 Templates

Jinja2 has mostly the same syntax as Jinja1. What’s different is that macros require parentheses around
the argument list now.

Additionally Jinja2 allows dynamic inheritance now and dynamic includes. The old helper function
rendertemplate is gone now, include can be used instead. Includes no longer import macros and variable
assignments, for that the new import tag is used. This concept is explained in the Import documentation.

Another small change happened in the for-tag. The special loop variable doesn’t have a parent attribute,
instead you have to alias the loop yourself. See Accessing the parent Loop for more details.

7.2 Django

If you have previously worked with Django templates, you should find Jinja2 very familiar. In fact,
most of the syntax elements look and work the same.

However, Jinja2 provides some more syntax elements covered in the documentation and some work a
bit different.

This section covers the template changes. As the API is fundamentally different we won’t cover it here.

7.2.1 Method Calls

In Django method calls work implicitly. With Jinja2 you have to specify that you want to call an object.
Thus this Django code:

{% for page in user.get_created_pages %}
...

{% endfor %}

will look like this in Jinja:

{% for page in user.get_created_pages() %}
...

{% endfor %}

This allows you to pass variables to the function which is also used for macros which is not possible in
Django.

7.2.2 Conditions

In Django you can use the following constructs to check for equality:

{% ifequal foo "bar" %}
...

{% else %}
...

{% endifequal %}

In Jinja2 you can use the normal if statement in combination with operators:

62 Chapter 7. Switching from other Template Engines

Jinja2 Documentation, Release 2.0

{% if foo == ’bar’ %}
...

{% else %}
...

{% endif %}

You can also have multiple elif branches in your template:

{% if something %}
...

{% elif otherthing %}
...

{% elif foothing %}
...

{% else %}
...

{% endif %}

7.2.3 Filter Arguments

Jinja2 provides more than one argument for filters. Also the syntax for argument passing is different. A
template that looks like this in Django:

{{ items|join:", " }}

looks like this in Jinja2:

{{ items|join(’, ’) }}

In fact it’s a bit more verbose but it allows different types of arguments - including variables - and more
than one of them.

7.2.4 Tests

In addition to filters there also are tests you can perform using the is operator. Here are some examples:

{% if user.user_id is odd %}
{{ user.username|e }} is odd

{% else %}
hmm. {{ user.username|e }} looks pretty normal

{% endif %}

7.2.5 Loops

For loops work very similar to Django, the only incompatibility is that in Jinja2 the special variable for
the loop context is called loop and not forloop like in Django.

7.2.6 Cycle

The {% cycle %} tag does not exist in Jinja because of it’s implicit nature. However you can achieve
mostly the same by using the cycle method on a loop object.

The following Django template:

7.2. Django 63

Jinja2 Documentation, Release 2.0

{% for user in users %}
<li class="{% cycle ’odd’ ’even’ %}">{{ user }}

{% endfor %}

Would look like this in Jinja:

{% for user in users %}
<li class="{{ loop.cycle(’odd’, ’even’) }}">{{ user }}

{% endfor %}

There is no equivalent of {% cycle ... as variable %}.

7.3 Mako

If you have used Mako so far and want to switch to Jinja2 you can configure Jinja2 to look more like
Mako:

env = Environment(’<%’, ’%>’, ’${’, ’}’, ’%’)

Once the environment is configure like that Jinja2 should be able to interpret a small subset of Mako
templates. Jinja2 does not support embedded Python code so you would have to move that out of the
template. The syntax for defs (in Jinja2 defs are called macros) and template inheritance is different too.
The following Mako template:

<%inherit file="layout.html" />
<%def name="title()">Page Title</%def>

% for item in list:

${item}
% endfor

Looks like this in Jinja2 with the above configuration:

<% extends "layout.html" %>
<% block title %>Page Title<% endblock %>
<% block body %>

% for item in list:

${item}
% endfor

<% endblock %>

64 Chapter 7. Switching from other Template Engines

CHAPTER

EIGHT

TIPS AND TRICKS

This part of the documentation shows some tips and tricks for Jinja2 templates.

8.1 Null-Master Fallback

Jinja2 supports dynamic inheritance and does not distinguish between parent and child template as
long as no extends tag is visited. While this leads to the surprising behavior that everything before the
first extends tag including whitespace is printed out instead of being igored, it can be used for a neat
trick.

Usually child templates extend from one template that adds a basic HTML skeleton. However it’s
possible put the extends tag into an if tag to only extend from the layout template if the standalone
variable evaluates to false which it does per default if it’s not defined. Additionally a very basic skeleton
is added to the file so that if it’s indeed rendered with standalone set to True a very basic HTML skeleton
is added:

{% if not standalone %}{% extends ’master.html’ %}{% endif -%}
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<title>{% block title %}The Page Title{% endblock %}</title>
<link rel="stylesheet" href="style.css" type="text/css">
{% block body %}
<p>This is the page body.</p>

{% endblock %}

8.2 Alternating Rows

If you want to have different styles for each row of a table or list you can use the cycle method on the
loop object:

{% for row in rows %}
<li class="{{ loop.cycle(’odd’, ’even’) }}">{{ row }}

{% endfor %}

cycle can take an unlimited amount of strings. Each time this tag is encountered the next item from the
list is rendered.

65

Jinja2 Documentation, Release 2.0

8.3 Highlighting Active Menu Items

Often you want to have a navigation bar with an active navigation item. This is really simple to achieve.
Because assignments outside of blocks in child templates are global and executed before the layout
template is evaluated it’s possible to define the active menu item in the child template:

{% extends "layout.html" %}
{% set active_page = "index" %}

The layout template can then access active_page. Additionally it makes sense to defined a default for
that variable:

{% set navigation_bar = [
(’/’, ’index’, ’Index’),
(’/downloads/’, ’downloads’, ’Downloads’),
(’/about/’, ’about’, ’About’)

] -%}
{% set active_page = active_page|default(’index’) -%}
...
<ul id="navigation">
{% for href, id, caption in navigation_bar %}

<li{% if id == active_page %} class="active"{% endif
%}>{{ caption|e }}/li>

{% endfor %}

...

8.4 Accessing the parent Loop

The special loop variable always points to the innermost loop. If it’s desired to have access to an outer
loop it’s possible to alias it:

<table>
{% for row in table %}
<tr>
{% set rowloop = loop %}
{% for cell in row %}
<td id="cell-{{ rowloop.index }}-{{ loop.index }}>{{ cell }}</td>

{% endfor %}
</tr>

{% endfor %}
</table>

66 Chapter 8. Tips and Tricks

CHAPTER

NINE

FREQUENTLY ASKED QUESTIONS

This page answers some of the often asked questions about Jinja.

9.1 Why is it called Jinja?

The name Jinja was chosen because it’s the name of a Japanese temple and temple and template share a
similar pronunciation. It is not named after the capital city of Uganda.

9.2 How fast is it?

We really hate benchmarks especially since they don’t reflect much. The performance of a template
depends on many factors and you would have to benchmark different engines in different situations.
The benchmarks from the testsuite show that Jinja2 has a similar performance to Mako and is between
10 and 20 times faster than Django’s template engine or Genshi. These numbers should be taken with
tons of salt as the benchmarks that took these numbers only test a few performance related situations
such as looping. Generally speaking the performance of a template engine doesn’t matter much as the
usual bottleneck in a web application is either the database or the application code.

9.3 How Compatible is Jinja2 with Django?

The default syntax of Jinja2 matches Django syntax in many ways. However this similarity doesn’t
mean that you can use a Django template unmodified in Jinja2. For example filter arguments use a
function call syntax rather than a colon to separate filter name and arguments. Additionally the exten-
sion interface in Jinja is fundamentally different from the Django one which means that your custom
tags won’t work any longer.

Generally speaking you will use much less custom extensions as the Jinja template system allows you
to use a certain subset of Python expressions which can replace most Django extensions. For example
instead of using something like this:

{% load comments %}
{% get_latest_comments 10 as latest_comments %}
{% for comment in latest_comments %}

...
{% endfor %}

You will most likely provide an object with attributes to retrieve comments from the database:

{% for comment in models.comments.latest(10) %}
...

{% endfor %}

67

http://www.makotemplates.org/

Jinja2 Documentation, Release 2.0

Or directly provide the model for quick testing:

{% for comment in Comment.objects.order_by(’-pub_date’)[:10] %}
...

{% endfor %}

Please keep in mind that even though you may put such things into templates it still isn’t a good idea.
Queries should go into the view code and now the template!

9.4 Isn’t it a terrible idea to put Logic into Templates?

Without a doubt you should try to remove as much logic from templates as possible. But templates
without any logic mean that you have to do all the processing in the code which is boring and stupid. A
template engine that does that is shipped with Python and called string.Template. Comes without loops
and if conditions and is by far the fastest template engine you can get for Python.

So some amount of logic is required in templates to keep everyone happy. And Jinja leaves it pretty
much to you how much logic you want to put into templates. There are some restrictions in what you
can do and what not.

Jinja2 neither allows you to put arbitrary Python code into templates nor does it allow all Python ex-
pressions. The operators are limited to the most common ones and more advanced expressions such
as list comprehensions and generator expressions are not supported. This keeps the template engine
easier to maintain and templates more readable.

9.5 Why is Autoescaping not the Default?

There are multiple reasons why automatic escaping is not the default mode and also not the recom-
mended one. While automatic escaping of variables means that you will less likely have an XSS prob-
lem it also causes a huge amount of extra processing in the template engine which can cause serious
performance problems. As Python doesn’t provide a way to mark strings as unsafe Jinja has to hack
around that limitation by providing a custom string class (the Markup string) that safely interacts with
safe and unsafe strings.

With explicit escaping however the template engine doesn’t have to perform any safety checks on vari-
ables. Also a human knows not to escape integers or strings that may never contain characters one has
to escape or already HTML markup. For example when iterating over a list over a table of integers and
floats for a table of statistics the template designer can omit the escaping because he knows that integers
or floats don’t contain any unsafe parameters.

Additionally Jinja2 is a general purpose template engine and not only used for HTML/XML generation.
For example you may generate LaTeX, emails, CSS, JavaScript, or configuration files.

9.6 Why is the Context immutable?

When writing a contextfunction() or something similar you may have noticed that the context
tries to stop you from modifying it. If you have managed to modify the context by using an internal
context API you may have noticed that changes in the context don’t seem to be visible in the template.
The reason for this is that Jinja uses the context only as primary data source for template variables for
performance reasons.

If you want to modify the context write a function that returns a variable instead that one can assign to
a variable by using set:

{% set comments = get_latest_comments() %}

68 Chapter 9. Frequently Asked Questions

Jinja2 Documentation, Release 2.0

9.7 I don’t have the _speedups Module. Is Jinja slower now?

To achieve a good performance with automatic escaping enabled, the escaping function is also imple-
mented in pure C and used if Jinja2 was installed with the speedups module. This happens automati-
cally if a C compiler is available on the system during installation.

9.8 My tracebacks look weird. What’s happening?

If the speedups module is not compiled and you are using a Python installation without ctypes (Python
2.4 without ctypes, Jython or Google’s AppEngine) Jinja2 is unable to provide correct debugging infor-
mation and the traceback may be incomplete. There is currently no good workaround for Jython or the
AppEngine as ctypes is unavailable there and it’s not possible to use the speedups extension.

9.9 Why is there no Python 2.3 support?

Python 2.3 is missing a lot of features that are used heavily in Jinja2. This decision was made as with the
upcoming Python 2.6 and 3.0 versions it becomes harder to maintain the code for older Python versions.
If you really need Python 2.3 support you either have to use Jinja 1 or other templating engines that still
support 2.3.

9.7. I don’t have the _speedups Module. Is Jinja slower now? 69

http://jinja.pocoo.org/1/

Jinja2 Documentation, Release 2.0

70 Chapter 9. Frequently Asked Questions

CHAPTER

TEN

CHANGELOG

10.1 Version 2.1.1

(Bugfix release)

• Fixed a translation error caused by looping over empty recursive loops.

10.2 Version 2.1

(codename Yasuzō, released on November 23rd 2008)

• fixed a bug with nested loops and the special loop variable. Before the change an inner loop
overwrote the loop variable from the outer one after iteration.

• fixed a bug with the i18n extension that caused the explicit pluralization block to look up the
wrong variable.

• fixed a limitation in the lexer that made {{ foo.0.0 }} impossible.

• index based subscribing of variables with a constant value returns an undefined object now in-
stead of raising an index error. This was a bug caused by eager optimizing.

• the i18n extension looks up foo.ugettext now followed by foo.gettext if an translations object is in-
stalled. This makes dealing with custom translations classes easier.

• fixed a confusing behavior with conditional extending. loops were partially executed under some
conditions even though they were not part of a visible area.

• added sort filter that works like dictsort but for arbitrary sequences.

• fixed a bug with empty statements in macros.

• implemented a bytecode cache system. (Bytecode Cache)

• the template context is now weakref-able

• inclusions and imports “with context” forward all variables now, not only the initial context.

• added a cycle helper called cycler.

• added a joining helper called joiner.

• added a compile_expression method to the environment that allows compiling of Jinja expressions
into callable Python objects.

• fixed an escaping bug in urlize

71

Jinja2 Documentation, Release 2.0

10.3 Version 2.0

(codename jinjavitus, released on July 17th 2008)

• the subscribing of objects (looking up attributes and items) changed from slightly. It’s now possi-
ble to give attributes or items a higher priority by either using dot-notation lookup or the bracket
syntax. This also changed the AST slightly. Subscript is gone and was replaced with Getitem and
Getattr.

For more information see the implementation details.

• added support for preprocessing and token stream filtering for extensions. This would allow
extensions to allow simplified gettext calls in template data and something similar.

• added jinja2.environment.TemplateStream.dump().

• added missing support for implicit string literal concatenation. {{ "foo" "bar" }} is equiva-
lent to {{ "foobar" }}

• else is optional for conditional expressions. If not given it evaluates to false.

• improved error reporting for undefined values by providing a position.

• filesizeformat filter uses decimal prefixes now per default and can be set to binary mode with the
second parameter.

• fixed bug in finalizer

10.4 Version 2.0rc1

(no codename, released on June 9th 2008)

• first release of Jinja2

72 Chapter 10. Changelog

INDEX

Symbols
_fail_with_undefined_error() (jinja2.Undefined

method), 11
_undefined_exception (jinja2.Undefined at-

tribute), 11
_undefined_hint (jinja2.Undefined attribute), 11
_undefined_name (jinja2.Undefined attribute), 11
_undefined_obj (jinja2.Undefined attribute), 11

A
abs() (built-in function), 39
Add (class in jinja2.nodes), 53
And (class in jinja2.nodes), 53
as_const() (jinja2.nodes.Expr method), 53
Assign (class in jinja2.nodes), 57
attr() (built-in function), 39
attr() (jinja2.ext.Extension method), 50

B
BaseLoader (class in jinja2), 13
batch() (built-in function), 39
BinExpr (class in jinja2.nodes), 53
Block (class in jinja2.nodes), 57
blocks (jinja2.Context attribute), 12
blocks (jinja2.Template attribute), 21
Break (class in jinja2.nodes), 57
Bucket (class in jinja2.bccache), 16
bytecode_from_string() (jinja2.bccache.Bucket

method), 16
bytecode_to_string() (jinja2.bccache.Bucket

method), 16
BytecodeCache (class in jinja2), 15

C
Call (class in jinja2.nodes), 54
call() (jinja2.runtime.Context method), 12
call_method() (jinja2.ext.Extension method), 50
callable() (built-in function), 43
CallBlock (class in jinja2.nodes), 57
can_assign() (jinja2.nodes.Expr method), 53
capitalize() (built-in function), 39
center() (built-in function), 39
ChoiceLoader (class in jinja2), 15
clear() (jinja2.BytecodeCache method), 15
clear_caches() (in module jinja2), 17

code (jinja2.Bucket attribute), 16
Compare (class in jinja2.nodes), 54
compile_expression() (jinja2.Environment

method), 8
Concat (class in jinja2.nodes), 54
CondExpr (class in jinja2.nodes), 54
Const (class in jinja2.nodes), 55
Context (class in jinja2.runtime), 12
contextfilter() (in module jinja2), 17
contextfunction() (in module jinja2), 17
ContextReference (class in jinja2.nodes), 54
Continue (class in jinja2.nodes), 57
count_newlines() (in module jinja2.lexer), 52
current (cycler attribute), 45
current (jinja2.ext.TokenStream attribute), 51
cycler (built-in class), 44

D
DebugUndefined (class in jinja2), 11
default() (built-in function), 39
defined() (built-in function), 43
Dict (class in jinja2.nodes), 55
dict() (built-in function), 44
DictLoader (class in jinja2), 14
dictsort() (built-in function), 39
disable_buffering() (jinja2.environment.TemplateStream

method), 10
Div (class in jinja2.nodes), 53
divisibleby() (built-in function), 43
dump() (jinja2.environment.TemplateStream

method), 10
dump_bytecode() (jinja2.BytecodeCache method),

15

E
enable_buffering() (jinja2.environment.TemplateStream

method), 10
Environment (class in jinja2), 6
environment (jinja2.Bucket attribute), 16
environment (jinja2.Context attribute), 12
EnvironmentAttribute (class in jinja2.nodes), 54
environmentfilter() (in module jinja2), 17
environmentfunction() (in module jinja2), 17
eos (jinja2.lexer.TokenStream attribute), 51
escape() (built-in function), 39
escape() (in module jinja2), 17

73

Jinja2 Documentation, Release 2.0

escape() (jinja2.Markup class method), 18
escaped() (built-in function), 43
even() (built-in function), 43
expect() (jinja2.lexer.TokenStream method), 52
exported_vars (jinja2.Context attribute), 12
Expr (class in jinja2.nodes), 53
ExprStmt (class in jinja2.nodes), 57
extend() (jinja2.Environment method), 8
Extends (class in jinja2.nodes), 57
Extension (class in jinja2.ext), 50
ExtensionAttribute (class in jinja2.nodes), 54
extract_translations() (jinja2.Environment

method), 47

F
fail() (jinja2.parser.Parser method), 51
filename (jinja2.ext.Parser attribute), 51
filename (jinja2.Template attribute), 9
filename (jinja2.TemplateSyntaxError attribute), 19
filesizeformat() (built-in function), 40
FileSystemBytecodeCache (class in jinja2), 16
FileSystemLoader (class in jinja2), 14
Filter (class in jinja2.nodes), 54
filter_stream() (jinja2.ext.Extension method), 50
FilterBlock (class in jinja2.nodes), 57
filters (jinja2.Environment attribute), 7
find() (jinja2.nodes.Node method), 52
find_all() (jinja2.nodes.Node method), 52
first() (built-in function), 40
float() (built-in function), 40
FloorDiv (class in jinja2.nodes), 53
For (class in jinja2.nodes), 57
forceescape() (built-in function), 40
format() (built-in function), 40
free_identifier() (jinja2.parser.Parser method), 51
from_string() (jinja2.Environment method), 8
FromImport (class in jinja2.nodes), 57
FunctionLoader (class in jinja2), 14

G
generate() (jinja2.Template method), 9
get() (jinja2.MemcachedBytecodeCache.MinimalClientInterface

method), 17
get_all() (jinja2.runtime.Context method), 13
get_exported() (jinja2.runtime.Context method),

13
get_source() (jinja2.BaseLoader method), 13
get_template() (jinja2.Environment method), 8
Getattr (class in jinja2.nodes), 55
Getitem (class in jinja2.nodes), 55
globals (jinja2.Environment attribute), 7
globals (jinja2.Template attribute), 9
groupby() (built-in function), 40

H
Helper (class in jinja2.nodes), 56

I
identifier (jinja2.ext.Extension attribute), 50
If (class in jinja2.nodes), 57
ImmutableSandboxedEnvironment (class in

jinja2.sandbox), 23
Import (class in jinja2.nodes), 58
ImportedName (class in jinja2.nodes), 55
Impossible, 58
Include (class in jinja2.nodes), 58
indent() (built-in function), 40
install_gettext_translations() (jinja2.Environment

method), 47
install_null_translations() (jinja2.Environment

method), 47
int() (built-in function), 40
InternalName (class in jinja2.nodes), 55
is_internal_attribute() (in module jinja2.sandbox),

23
is_safe_attribute() (jinja2.sandbox.SandboxedEnvironment

method), 23
is_safe_callable() (jinja2.sandbox.SandboxedEnvironment

method), 23
is_undefined() (in module jinja2), 17
is_up_to_date (jinja2.Template attribute), 21
iter_child_nodes() (jinja2.nodes.Node method), 53
iter_fields() (jinja2.nodes.Node method), 53
iterable() (built-in function), 43

J
jinja2 (module), 5
jinja2.ext (module), 48
jinja2.nodes (module), 52
jinja2.sandbox (module), 23
join() (built-in function), 40
join_path() (jinja2.Environment method), 8
joiner (built-in class), 45

K
key (jinja2.Bucket attribute), 16
Keyword (class in jinja2.nodes), 56

L
last() (built-in function), 41
length() (built-in function), 41
lex() (jinja2.Environment method), 21
lineno (jinja2.ext.Token attribute), 52
lineno (jinja2.TemplateSyntaxError attribute), 19
lipsum() (built-in function), 44
List (class in jinja2.nodes), 55
list() (built-in function), 41
Literal (class in jinja2.nodes), 55
load() (jinja2.BaseLoader method), 14
load_bytecode() (jinja2.bccache.Bucket method),

16
load_bytecode() (jinja2.BytecodeCache method),

15
look() (jinja2.lexer.TokenStream method), 51

74 Index

Jinja2 Documentation, Release 2.0

lower() (built-in function), 41, 43

M
Macro (class in jinja2.nodes), 58
make_module() (jinja2.Template method), 9
MarkSafe (class in jinja2.nodes), 55
Markup (class in jinja2), 18
MemcachedBytecodeCache (class in jinja2), 16
MemcachedBytecodeCache.MinimalClientInterface

(class in jinja2), 16
message (jinja2.TemplateSyntaxError attribute), 19
Mod (class in jinja2.nodes), 54
modifies_known_mutable() (in module

jinja2.sandbox), 24
module (jinja2.Template attribute), 9
Mul (class in jinja2.nodes), 54

N
Name (class in jinja2.nodes), 56
name (jinja2.Context attribute), 12
name (jinja2.ext.Parser attribute), 51
name (jinja2.Template attribute), 9
name (jinja2.TemplateSyntaxError attribute), 19
Neg (class in jinja2.nodes), 56
new_context() (jinja2.Template method), 21
next() (cycler method), 45
next() (jinja2.lexer.TokenStream method), 51
next_if() (jinja2.lexer.TokenStream method), 52
Node (class in jinja2.nodes), 52
none() (built-in function), 43
Not (class in jinja2.nodes), 56
number() (built-in function), 43

O
odd() (built-in function), 43
Operand (class in jinja2.nodes), 56
Or (class in jinja2.nodes), 54
Output (class in jinja2.nodes), 58
overlay() (jinja2.Environment method), 7

P
PackageLoader (class in jinja2), 14
Pair (class in jinja2.nodes), 56
parent (jinja2.Context attribute), 12
parse() (jinja2.Environment method), 21
parse() (jinja2.ext.Extension method), 50
parse_assign_target() (jinja2.parser.Parser

method), 51
parse_expression() (jinja2.parser.Parser method),

51
parse_statements() (jinja2.parser.Parser method),

51
parse_tuple() (jinja2.parser.Parser method), 51
Parser (class in jinja2.parser), 50
Pos (class in jinja2.nodes), 56
Pow (class in jinja2.nodes), 54
pprint() (built-in function), 41

PrefixLoader (class in jinja2), 14
preprocess() (jinja2.Environment method), 21
preprocess() (jinja2.ext.Extension method), 50
push() (jinja2.lexer.TokenStream method), 51

R
random() (built-in function), 41
range() (built-in function), 44
render() (jinja2.Template method), 9
replace() (built-in function), 41
reset() (cycler method), 44
reset() (jinja2.bccache.Bucket method), 16
resolve() (jinja2.runtime.Context method), 12
reverse() (built-in function), 41
root_render_func() (jinja2.Template method), 21
round() (built-in function), 41

S
safe() (built-in function), 41
sameas() (built-in function), 43
sandboxed (jinja2.Environment attribute), 7
SandboxedEnvironment (class in jinja2.sandbox),

23
SecurityError, 23
sequence() (built-in function), 43
set() (jinja2.MemcachedBytecodeCache.MinimalClientInterface

method), 16
set_ctx() (jinja2.nodes.Node method), 53
set_environment() (jinja2.nodes.Node method), 53
set_lineno() (jinja2.nodes.Node method), 53
shared (jinja2.Environment attribute), 7
skip() (jinja2.lexer.TokenStream method), 51
skip_if() (jinja2.lexer.TokenStream method), 52
Slice (class in jinja2.nodes), 56
slice() (built-in function), 41
sort() (built-in function), 42
Stmt (class in jinja2.nodes), 57
stream (jinja2.ext.Parser attribute), 51
stream() (jinja2.Template method), 9
StrictUndefined (class in jinja2), 11
string() (built-in function), 42, 44
striptags() (built-in function), 42
striptags() (jinja2.Markup method), 18
Sub (class in jinja2.nodes), 54
sum() (built-in function), 42

T
tags (jinja2.ext.Extension attribute), 50
Template (class in jinja2), 8
Template (class in jinja2.nodes), 58
TemplateAssertionError, 19
TemplateData (class in jinja2.nodes), 55
TemplateError, 19
TemplateNotFound, 19
TemplateStream (class in jinja2.environment), 10
TemplateSyntaxError, 19
Test (class in jinja2.nodes), 56
test() (jinja2.lexer.Token method), 52

Index 75

Jinja2 Documentation, Release 2.0

test_any() (jinja2.lexer.Token method), 52
tests (jinja2.Environment attribute), 7
title() (built-in function), 42
Token (class in jinja2.lexer), 52
TokenStream (class in jinja2.lexer), 51
trim() (built-in function), 42
truncate() (built-in function), 42
Tuple (class in jinja2.nodes), 55
type (jinja2.ext.Token attribute), 52

U
UnaryExpr (class in jinja2.nodes), 56
Undefined (class in jinja2), 10
undefined() (built-in function), 44
undefined() (jinja2.Environment method), 7
UndefinedError, 19
unescape() (jinja2.Markup method), 18
uninstall_gettext_translations()

(jinja2.Environment method), 47
unsafe() (in module jinja2.sandbox), 23
upper() (built-in function), 42, 44
urlize() (built-in function), 42

V
value (jinja2.ext.Token attribute), 52
vars (jinja2.Context attribute), 12

W
wordcount() (built-in function), 42
wordwrap() (built-in function), 42
write_bytecode() (jinja2.bccache.Bucket method),

16

X
xmlattr() (built-in function), 42

76 Index

	Introduction
	Prerequisites
	Installation
	Basic API Usage

	API
	Basics
	Unicode
	High Level API
	Notes on Identifiers
	Undefined Types
	The Context
	Loaders
	Bytecode Cache
	Utilities
	Exceptions
	Custom Filters
	Custom Tests
	The Global Namespace
	Low Level API

	Sandbox
	Template Designer Documentation
	Synopsis
	Variables
	Filters
	Tests
	Comments
	Whitespace Control
	Escaping
	Line Statements
	Template Inheritance
	HTML Escaping
	List of Control Structures
	Import Context Behavior
	Expressions
	List of Builtin Filters
	List of Builtin Tests
	List of Global Functions
	Extensions

	Extensions
	Adding Extensions
	i18n Extension
	Expression Statement
	Loop Controls
	Writing Extensions

	Integration
	Babel Integration
	Pylons
	TextMate
	Vim

	Switching from other Template Engines
	Jinja1
	Django
	Mako

	Tips and Tricks
	Null-Master Fallback
	Alternating Rows
	Highlighting Active Menu Items
	Accessing the parent Loop

	Frequently Asked Questions
	Why is it called Jinja?
	How fast is it?
	How Compatible is Jinja2 with Django?
	Isn't it a terrible idea to put Logic into Templates?
	Why is Autoescaping not the Default?
	Why is the Context immutable?
	I don't have the _speedups Module. Is Jinja slower now?
	My tracebacks look weird. What's happening?
	Why is there no Python 2.3 support?

	Changelog
	Version 2.1.1
	Version 2.1
	Version 2.0
	Version 2.0rc1

	Index

