Modular Forms over a Non-minimal Base Ring

class sage.modular.modform.ambient_R.ModularFormsAmbient_R(M, base_ring)
__init__(M, base_ring)

Ambient space of modular forms over a ring other than QQ.

EXAMPLES:
sage: M = ModularForms(23,2,base_ring=GF(7)) ## indirect doctest sage: M Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Finite Field of size 7 sage: M == loads(dumps(M)) True
_compute_q_expansion_basis(prec=None)

Compute q-expansions for a basis of self to precision prec.

EXAMPLES:
sage: M = ModularForms(23,2,base_ring=GF(7)) sage: M._compute_q_expansion_basis(5) [1 + 5*q^3 + 5*q^4 + O(q^5), q + 6*q^3 + 6*q^4 + O(q^5), q^2 + 5*q^3 + 6*q^4 + O(q^5)]
_repr_()

String representation for self.

EXAMPLES:
sage: M = ModularForms(23,2,base_ring=GF(7)) ## indirect doctest sage: M._repr_() ‘Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Finite Field of size 7’
cuspidal_submodule()

Return the cuspidal subspace of this space.

EXAMPLE:

sage: C = CuspForms(7, 4, base_ring=CyclotomicField(5)) # indirect doctest
sage: type(C)
<class 'sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_R'>

Previous topic

Modular Forms for \Gamma_1(N) over \QQ.

Next topic

Submodules of spaces of modular forms

This Page