Modular Forms for $Gamma_0(N)$ over $Q$.

TESTS:
sage: m = ModularForms(Gamma0(389),6) sage: loads(dumps(m)) == m True
class sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q(level, weight)

A space of modular forms for Gamma_0(N) over QQ.

__init__(level, weight)

Create a space of modular symbols for $Gamma_0(N)$ of given weight defined over $QQ$.

EXAMPLES:
sage: m = ModularForms(Gamma0(11),4); m Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(11) of weight 4 over Rational Field sage: type(m) <class ‘sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q’>
_compute_atkin_lehner_matrix(d)

Compute the matrix of the Atkin-Lehner involution W_d acting on self, where d is a divisor of the level. This is only implemented in the (trivial) level 1 case.

EXAMPLE:

sage: ModularForms(1, 30).atkin_lehner_operator()
Hecke module morphism Atkin-Lehner operator W_1 defined by the matrix
[1 0 0]
[0 1 0]
[0 0 1]
Domain: Modular Forms space of dimension 3 for Modular Group SL(2,Z) ...
Codomain: Modular Forms space of dimension 3 for Modular Group SL(2,Z) ...
cuspidal_submodule()

Return the cuspidal submodule of this space of modular forms for $Gamma_0(N)$.

EXAMPLES:
sage: m = ModularForms(Gamma0(33),4) sage: s = m.cuspidal_submodule(); s Cuspidal subspace of dimension 10 of Modular Forms space of dimension 14 for Congruence Subgroup Gamma0(33) of weight 4 over Rational Field sage: type(s) <class ‘sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_g0_Q’>
eisenstein_submodule()

Return the Eisenstein submodule of this space of modular forms for $Gamma_0(N)$.

EXAMPLES:
sage: m = ModularForms(Gamma0(389),6) sage: m.eisenstein_submodule() Eisenstein subspace of dimension 2 of Modular Forms space of dimension 163 for Congruence Subgroup Gamma0(389) of weight 6 over Rational Field

Previous topic

Modular Forms with Character

Next topic

Modular Forms for \Gamma_1(N) over \QQ.

This Page