Characteristic Species

class sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure(parent, labels, list)
__repr__()

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures([1, 2, 3]).random_element(); a
{1, 2, 3}
sage: F = species.SingletonSpecies()
sage: F.structures([1]).list()
[1]
sage: F = species.EmptySetSpecies()
sage: F.structures([]).list()
[{}]
automorphism_group()

Returns the group of permutations whose action on this structure leave it fixed. For the characteristic species, there is only one structure, so every permutation is in its automorphism group.

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.automorphism_group()
Symmetric group of order 3! as a permutation group
canonical_label()

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.canonical_label()
{'a', 'b', 'c'}
transport(perm)

Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'a', 'b', 'c'}
class sage.combinat.species.characteristic_species.CharacteristicSpecies_class(n, min=None, max=None, weight=None)
__init__(n, min=None, max=None, weight=None)

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: c = F.generating_series().coefficients(4)
sage: F._check()
True
sage: F == loads(dumps(F))
True
_cis_term(base_ring)

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: g = F.cycle_index_series()
sage: g.coefficients(5)
[0, 0, 1/2*p[1, 1] + 1/2*p[2], 0, 0]
_default_structure_class
alias of CharacteristicSpeciesStructure
_equation(var_mapping)

Returns the right hand side of an algebraic equation satisfied by this species. This is a utility function called by the algebraic_equation_system method.

EXAMPLES:

sage: C = species.CharacteristicSpecies(2)
    sage: Qz = QQ['z']
    sage: R.<node0> = Qz[]
    sage: var_mapping = {'z':Qz.gen(), 'node0':R.gen()}
    sage: C._equation(var_mapping)
    z^2
_gs_term(base_ring)

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: F.generating_series().coefficients(5)
[0, 0, 1/2, 0, 0]
sage: F.generating_series().count(2)
1
_isotypes(structure_class, labels)

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: l = [1, 2, 3]
sage: F.structures(l).list()
[]
sage: F = species.CharacteristicSpecies(3)
sage: F.structures(l).list()
[{1, 2, 3}]
_itgs_term(base_ring)

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: F.isotype_generating_series().coefficients(5)
[0, 0, 1, 0, 0]

Here we test out weighting each structure by q.

sage: R.<q> = ZZ[]
sage: Fq = species.CharacteristicSpecies(2, weight=q)
sage: Fq.isotype_generating_series().coefficients(5)
[0, 0, q, 0, 0]
_order()

Returns the order of the generating series.

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: F._order()
2
_structures(structure_class, labels)

EXAMPLES:

sage: F = species.CharacteristicSpecies(2)
sage: l = [1, 2, 3]
sage: F.structures(l).list()
[]
sage: F = species.CharacteristicSpecies(3)
sage: F.structures(l).list()
[{1, 2, 3}]
class sage.combinat.species.characteristic_species.EmptySetSpecies_class(min=None, max=None, weight=None)
__init__(min=None, max=None, weight=None)

EXAMPLES:

sage: E = species.EmptySetSpecies()
sage: E._check()
True
sage: E == loads(dumps(E))
True
class sage.combinat.species.characteristic_species.SingletonSpecies_class(min=None, max=None, weight=None)
__init__(min=None, max=None, weight=None)

EXAMPLES:

sage: S = species.SingletonSpecies()
sage: S._check()
True
sage: S == loads(dumps(S))
True

Previous topic

Recursive Species

Next topic

Cycle Species

This Page