00001 00002 // 00003 // SFML - Simple and Fast Multimedia Library 00004 // Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com) 00005 // 00006 // This software is provided 'as-is', without any express or implied warranty. 00007 // In no event will the authors be held liable for any damages arising from the use of this software. 00008 // 00009 // Permission is granted to anyone to use this software for any purpose, 00010 // including commercial applications, and to alter it and redistribute it freely, 00011 // subject to the following restrictions: 00012 // 00013 // 1. The origin of this software must not be misrepresented; 00014 // you must not claim that you wrote the original software. 00015 // If you use this software in a product, an acknowledgment 00016 // in the product documentation would be appreciated but is not required. 00017 // 00018 // 2. Altered source versions must be plainly marked as such, 00019 // and must not be misrepresented as being the original software. 00020 // 00021 // 3. This notice may not be removed or altered from any source distribution. 00022 // 00024 00025 00027 inline Matrix3::Matrix3() 00028 { 00029 myData[0] = 1.f; myData[4] = 0.f; myData[8] = 0.f; myData[12] = 0.f; 00030 myData[1] = 0.f; myData[5] = 1.f; myData[9] = 0.f; myData[13] = 0.f; 00031 myData[2] = 0.f; myData[6] = 0.f; myData[10] = 1.f; myData[14] = 0.f; 00032 myData[3] = 0.f; myData[7] = 0.f; myData[11] = 0.f; myData[15] = 1.f; 00033 } 00034 00035 00037 inline Matrix3::Matrix3(float a00, float a01, float a02, 00038 float a10, float a11, float a12, 00039 float a20, float a21, float a22) 00040 { 00041 myData[0] = a00; myData[4] = a01; myData[8] = 0.f; myData[12] = a02; 00042 myData[1] = a10; myData[5] = a11; myData[9] = 0.f; myData[13] = a12; 00043 myData[2] = 0.f; myData[6] = 0.f; myData[10] = 1.f; myData[14] = 0.f; 00044 myData[3] = a20; myData[7] = a21; myData[11] = 0.f; myData[15] = a22; 00045 } 00046 00047 00049 inline Vector2f Matrix3::Transform(const Vector2f& point) const 00050 { 00051 return Vector2f(myData[0] * point.x + myData[4] * point.y + myData[12], 00052 myData[1] * point.x + myData[5] * point.y + myData[13]); 00053 } 00054 00055 00057 inline Matrix3 Matrix3::GetInverse() const 00058 { 00059 // Compute the determinant 00060 float det = myData[0] * (myData[15] * myData[5] - myData[7] * myData[13]) - 00061 myData[1] * (myData[15] * myData[4] - myData[7] * myData[12]) + 00062 myData[3] * (myData[13] * myData[4] - myData[5] * myData[12]); 00063 00064 // Compute the inverse if determinant is not zero 00065 if (det != 0.f) // don't use an epsilon because the determinant may *really* be tiny 00066 { 00067 return Matrix3( (myData[15] * myData[5] - myData[7] * myData[13]) / det, 00068 -(myData[15] * myData[4] - myData[7] * myData[12]) / det, 00069 (myData[13] * myData[4] - myData[5] * myData[12]) / det, 00070 -(myData[15] * myData[1] - myData[3] * myData[13]) / det, 00071 (myData[15] * myData[0] - myData[3] * myData[12]) / det, 00072 -(myData[13] * myData[0] - myData[1] * myData[12]) / det, 00073 (myData[7] * myData[1] - myData[3] * myData[5]) / det, 00074 -(myData[7] * myData[0] - myData[3] * myData[4]) / det, 00075 (myData[5] * myData[0] - myData[1] * myData[4]) / det); 00076 } 00077 else 00078 { 00079 return Identity; 00080 } 00081 } 00082 00083 00085 inline const float* Matrix3::Get4x4Elements() const 00086 { 00087 return myData; 00088 } 00089 00090 00092 inline Matrix3 Matrix3::operator *(const Matrix3& right) const 00093 { 00094 return Matrix3(myData[0] * right.myData[0] + myData[4] * right.myData[1] + myData[12] * right.myData[3], 00095 myData[0] * right.myData[4] + myData[4] * right.myData[5] + myData[12] * right.myData[7], 00096 myData[0] * right.myData[12] + myData[4] * right.myData[13] + myData[12] * right.myData[15], 00097 myData[1] * right.myData[0] + myData[5] * right.myData[1] + myData[13] * right.myData[3], 00098 myData[1] * right.myData[4] + myData[5] * right.myData[5] + myData[13] * right.myData[7], 00099 myData[1] * right.myData[12] + myData[5] * right.myData[13] + myData[13] * right.myData[15], 00100 myData[3] * right.myData[0] + myData[7] * right.myData[1] + myData[15] * right.myData[3], 00101 myData[3] * right.myData[4] + myData[7] * right.myData[5] + myData[15] * right.myData[7], 00102 myData[3] * right.myData[12] + myData[7] * right.myData[13] + myData[15] * right.myData[15]); 00103 } 00104 00105 00107 inline Matrix3 Matrix3::Transformation(const Vector2f& origin, const Vector2f& translation, float rotation, const Vector2f& scale) 00108 { 00109 // Combine the transformations 00110 float angle = -rotation * 3.141592654f / 180.f; 00111 float cosine = static_cast<float>(std::cos(angle)); 00112 float sine = static_cast<float>(std::sin(angle)); 00113 float sxCos = scale.x * cosine; 00114 float syCos = scale.y * cosine; 00115 float sxSin = scale.x * sine; 00116 float sySin = scale.y * sine; 00117 float tx = -origin.x * sxCos - origin.y * sySin + translation.x; 00118 float ty = origin.x * sxSin - origin.y * syCos + translation.y; 00119 00120 // Construct the matrix 00121 return Matrix3( sxCos, sySin, tx, 00122 -sxSin, syCos, ty, 00123 0.f, 0.f, 1.f); 00124 } 00125 00126 00128 inline Matrix3 Matrix3::Projection(const Vector2f& center, const Vector2f& size, float rotation) 00129 { 00130 // Rotation components 00131 float angle = rotation * 3.141592654f / 180.f; 00132 float cosine = static_cast<float>(std::cos(angle)); 00133 float sine = static_cast<float>(std::sin(angle)); 00134 float tx = -center.x * cosine - center.y * sine + center.x; 00135 float ty = center.x * sine - center.y * cosine + center.y; 00136 00137 // Projection components 00138 float a = 2.f / size.x; 00139 float b = -2.f / size.y; 00140 float c = -a * center.x; 00141 float d = -b * center.y; 00142 00143 // Rebuild the projection matrix 00144 return Matrix3( a * cosine, a * sine, a * tx + c, 00145 -b * sine, b * cosine, b * ty + d, 00146 0.f, 0.f, 1.f); 00147 }
:: Copyright © 2007-2008 Laurent Gomila, all rights reserved :: Documentation generated by doxygen 1.5.2 ::