Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 Bib Ind
 Top of Book   Previous Chapter   Next Chapter 

References

[Ale83] Aleshin, S. V., A free group of finite automata, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (4) (1983), 12-14.

[Bac07] Bacher, R., Determinants related to binomial coefficients modulo 2 and 4 (2007)
(arXiv:math/0708.1430).

[Bar03a] Bartholdi, L., A Wilson group of non-uniformly exponential growth, C. R. Math. Acad. Sci. Paris, 336 (7) (2003), 549--554.

[Bar03b] Bartholdi, L., Endomorphic presentations of branch groups, J. Algebra, 268 (2) (2003), 419--443.

[BG02] Bartholdi, L. and Grigorchuk, R. I., On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J., 28 (1) (2002), 47--90.

[BGN03] Bartholdi, L., Grigorchuk, R. and Nekrashevych, V., From fractal groups to fractal sets, in Fractals in Graz 2001, Birkhäuser, Trends Math., Basel (2003), 25--118.

[BGŠ03] Bartholdi, L., Grigorchuk, R. I. and Šuniḱ, Z., Branch groups, in Handbook of algebra, Vol. 3, North-Holland, Amsterdam (2003), 989--1112.

[BR05] Bartholdi, L. and Reznykov, I. I., A Mealy machine of growth n^2.4401 (2005)
(arXiv:math.GR/0506203).

[BRS06] Bartholdi, L., Reznykov, I. I. and Sushchansky, V. I., The smallest Mealy automaton of intermediate growth, J. Algebra, 295 (2) (2006), 387--414.

[BŠ01] Bartholdi, L. and Šuniḱ, Z., On the word and period growth of some groups of tree automorphisms, Comm. Algebra, 29 (11) (2001), 4923--4964.

[BV05] Bartholdi, L. and Virág, B., Amenability via random walks, Duke Math. J., 130 (1) (2005), 39--56.

[BS62] Baumslag, G. and Solitar, D., Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962), 199--201.

[Bel04] Bellingeri, P., On presentations of surface braid groups, J. Algebra, 274 (2) (2004), 543--563.

[BFH92] Bielefeld, B., Fisher, Y. and Hubbard, J., The classification of critically preperiodic polynomials as dynamical systems, J. Amer. Math. Soc., 5 (4) (1992), 721--762.

[BSV99] Brunner, A. M., Sidki, S. and Vieira, A. C., A just nonsolvable torsion-free group defined on the binary tree, J. Algebra, 211 (1) (1999), 99--114.

[BM97] Burger, M. and Mozes, S., Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris Sér. I Math., 324 (7) (1997), 747--752.

[BM00a] Burger, M. and Mozes, S., Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. (92) (2000), 113--150 (2001).

[BM00b] Burger, M. and Mozes, S., Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. (92) (2000), 151--194 (2001).

[Cha95] Charney, R., Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., 301 (2) (1995), 307--324.

[Dah05] Dahmani, F., An example of non-contracting weakly branch automaton group, in Geometric methods in group theory, Amer. Math. Soc., Contemp. Math., 372, Providence, RI (2005), 219--224.

[DH84] Douady, A. and Hubbard, J. H., Étude dynamique des polynômes complexes. Partie I, Université de Paris-Sud, Département de Mathématiques, Orsay, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 84 (1984), 75 pages.

[DH85] Douady, A. and Hubbard, J. H., Étude dynamique des polynômes complexes. Partie II, Université de Paris-Sud, Département de Mathématiques, Orsay, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 85 (1985), v+154 pages
(With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac).

[EH07] Eick, B. and Hartung, R., A nilpotent quotient algorithm for L-presented groups (2007)
(submitted).

[Ers04] Erschler, A., Boundary behavior for groups of subexponential growth, Ann. of Math. (2), 160 (3) (2004), 1183--1210.

[FG85] Fabrykowski, J. and Gupta, N., On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.), 49 (3-4) (1985), 249--256 (1987).

[FG91] Fabrykowski, J. and Gupta, N., On groups with sub-exponential growth functions. II, J. Indian Math. Soc. (N.S.), 56 (1-4) (1991), 217--228.

[GM05] Glasner, Y. and Mozes, S., Automata and square complexes, Geom. Dedicata, 111 (2005), 43--64.

[Gri84] Grigorchuk, R. I., Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (5) (1984), 939--985.

[GŠ06] Grigorchuk, R. and Šuniḱ, Z., Asymptotic aspects of Schreier graphs and Hanoi Towers groups, C. R. Math. Acad. Sci. Paris, 342 (8) (2006), 545--550.

[GŻ02a] Grigorchuk, R. I. and Żuk, A., On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput., 12 (1-2) (2002), 223--246
(International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)).

[GŻ02b] Grigorchuk, R. I. and Żuk, A., On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput., 12 (1-2) (2002), 223--246
(International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)).

[Gri80] Grigorčuk, R. I., On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen., 14 (1) (1980), 53--54.

[GS83] Gupta, N. and Sidki, S., On the Burnside problem for periodic groups, Math. Z., 182 (3) (1983), 385--388.

[Lys85] Lysënok, I. G., A set of defining relations for the Grigorchuk group, Mat. Zametki, 38 (4) (1985), 503--516, 634.

[MNS00] Macedońska, O., Nekrashevych, V. and Sushchansky, V., Commensurators of groups and reversible automata, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (12) (2000), 36--39.

[Mam03] Mamaghani, M. J., A fractal non-contracting class of automata groups, Bull. Iranian Math. Soc., 29 (2) (2003), 51--64, 92.

[Nek05] Nekrashevych, V., Self-similar groups, American Mathematical Society, Mathematical Surveys and Monographs, 117, Providence, RI (2005), xii+231 pages.

[Neu86] Neumann, P. M., Some questions of Edjvet and Pride about infinite groups, Illinois J. Math., 30 (2) (1986), 301--316.

[Pet06] Petrogradsky, V. M., Examples of self-iterating Lie algebras, J. Algebra, 302 (2) (2006), 881--886.

[Poi] Poirier, A., On postcritically finite polynomials, part 1: critical portraits, Stony Brook IMS 1993/5.

[SZ08] Shestakov, I. P. and Zelmanov, E., Some examples of nil Lie algebras, J. Eur. Math. Soc. (JEMS), 10 (2) (2008), 391--398.

[Sid00] Sidki, S., Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (1) (2000), 1925--1943
(Algebra, 12).

[Sid05] Sidki, S., Tree-wreathing applied to generation of groups by finite automata, Internat. J. Algebra Comput., 15 (5-6) (2005), 1205--1212.

[SW03] Sidki, S. and Wilson, J. S., Free subgroups of branch groups, Arch. Math. (Basel), 80 (5) (2003), 458--463.

[SS05] Silva, P. V. and Steinberg, B., On a class of automata groups generalizing lamplighter groups, Internat. J. Algebra Comput., 15 (5-6) (2005), 1213--1234.

[SVV06] Steinberg, B., Vorobets, M. and Vorobets, Y., Automata over a binary alphabet generating free groups of even rank (2006)
(arXiv:math.GR/0610033).

[Šun07] Šunić, Z., Hausdorff dimension in a family of self-similar groups, Geom. Dedicata, 124 (2007), 213--236.

[Tan02] Tan, D. T., Quadratische Morphismen (2002)
(Diplomarbeit at ETHZ, under the supervision of R. Pink).

[vN29] von Neumann, J., Zur allgemeinen Theorie des Masses, Fund. Math., 13 (1929), 73--116 and 333
((= Collected works, vol. I, pages 599--643)).

[VV06] Vorobets, M. and Vorobets, Y., On a series of finite automata defining free transformation groups (2006)
(arXiv:math.GR/0604328).

 Top of Book   Previous Chapter   Next Chapter 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 Bib Ind

generated by GAPDoc2HTML