[CS] Catino, F. and Spinelli, E. Lie nilpotent group algebras and upper Lie codimension subgroups, Comm. Algebra, 34 (10), (2006), p. 3859--3873
[Du] Du, X. K. The centers of a radical ring, Canad. Math. Bull., 35 (2), (1992), p. 174-179
[HB] Huppert, B. and Blackburn, N. Finite groups. II,
Springer-Verlag,
Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences],
242,
Berlin,
(1982),
p. xiii+531
(,
AMD, 44)
[LR86] Levin, F. and Rosenberger, G. Lie metabelian group rings in , Group and semigroup rings (Johannesburg, 1985), North-Holland, North-Holland Math. Stud., 126, Amsterdam, (1986), p. 153--161
[PPS73] Passi, I. B. S. and Passman, D. S. and Sehgal, S. K. Lie solvable group rings, Canad. J. Math., 25, (1973), p. 748--757
[Ros97] Rossmanith, R. Centre-by-metabelian group algebras, Friedrich-Schiller-Universit\accent127at Jena, (1997)
[Ros00] Rossmanith, R. Lie centre-by-metabelian group algebras in even characteristic. I, II, Israel J. Math., 115, (2000), p. 51--75, 77--99
[Ross] Rossmanith, R. Lie centre-by-metabelian group algebras over commutative rings, J. Algebra, 251 (2), (2002), p. 503--508
[Shalev91] Shalev, A. Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units, J. London Math. Soc. (2), 43 (1), (1991), p. 23--36
[Sims] Sims, C. C. Computation with finitely presented groups, Cambridge University Press, Encyclopedia of Mathematics and its Applications, 48, Cambridge, (1994), p. xiii+604
[Wursthorn] Wursthorn, M. Isomorphisms of modular group algebras: an algorithm and its application to groups of order $2\sp 6$, J. Symbolic Comput., 15 (2), (1993), p. 211--227
generated by GAPDoc2HTML