automgrp : a GAP 4 package - References

defcprime′
[Ale83]
S. V. Aleshin.
A free group of finite automata.
Vestnik Moskov. Univ. Ser. I Mat. Mekh., (4):12--14, 1983.
[Bar03]
Laurent Bartholdi.
A Wilson group of non-uniformly exponential growth.
C. R. Math. Acad. Sci. Paris, 336(7):549--554, 2003.
[BG02]
Laurent Bartholdi and Rostislav I. Grigorchuk.
On parabolic subgroups and Hecke algebras of some fractal groups.
Serdica Math. J., 28(1):47--90, 2002.
[BGK06]
Ievgen Bondarenko, Rostislav Grigorchuk, Rostyslav Kravchenko, Yevgen Muntyan, Volodymyr Nekrashevych, Dmytro Savchuk, and Zoran \vSunić.
Groups generated by 3-state automata over 2-letter alphabet, I, 2006.
(available at http://arxiv.org/abs/math.GR/0612178).
[BGK07]
Ievgen Bondarenko, Rostislav Grigorchuk, Rostyslav Kravchenko, Yevgen Muntyan, Volodymyr Nekrashevych, Dmytro Savchuk, and Zoran \vSunić.
Groups generated by 3-state automata over 2-letter alphabet, II, 2007.
(available at http://xxx.arxiv.org/abs/0704.3876).
[BKNV05]
L. Bartholdi, Vadim Kaimanovich, V. Nekrashevych, and Bálint Virág.
Amenability of automata groups.
(preprint), 2005.
[BN06]
Laurent I. Bartholdi and Volodymyr V. Nekrashevych.
Thurston equivalence of topological polynomials.
Acta Math., 197(1):1--51, 2006.
[BP06]
Kai-Uwe Bux and Rodrigo Pérez.
On the growth of iterated monodromy groups.
In Topological and asymptotic aspects of group theory, volume 394 of Contemp. Math., pages 61--76. Amer. Math. Soc., Providence, RI, 2006.
(available at http://www.arxiv.org/abs/math.GR/0405456).
[BRS06]
L. Bartholdi, I. I. Reznykov, and V. I. Sushchansky.
The smallest Mealy automaton of intermediate growth.
J. Algebra, 295(2):387--414, 2006.
[BS07]
Ievgen Bondarenko and Dmytro Savchuk.
On Sushchansky p-groups, 2007.
(available at http://arxiv.org/abs/math/0612200).
[BV05]
Laurent Bartholdi and Bálint Virág.
Amenability via random walks.
Duke Math. J., 130(1):39--56, 2005.
(available at http://arxiv.org/abs/math.GR/0305262).
[Ers04]
Anna Erschler.
Boundary behavior for groups of subexponential growth.
Annals of Math., 160(3):1183–--1210, 2004.
[FG85]
Jacek Fabrykowski and Narain Gupta.
On groups with sub-exponential growth functions.
J. Indian Math. Soc. (N.S.), 49(3-4):249--256 (1987), 1985.
[GLSZ00]
Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Zuk.
On a question of Atiyah.
C. R. Acad. Sci. Paris Sér. I Math., 331(9):663--668, 2000.
[GNS00]
R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanski\ui.
Automata, dynamical systems, and groups.
Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):134--214, 2000.
[Gri80]
R. I. Grigor\vcuk.
On Burnside's problem on periodic groups.
Funktsional. Anal. i Prilozhen., 14(1):53--54, 1980.
[Gri84]
R. I. Grigorchuk.
Degrees of growth of finitely generated groups and the theory of invariant means.
Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939--985, 1984.
[Gri05]
Rostislav Grigorchuk.
Solved and unsolved problems around one group.
In Infinite groups: geometric, combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 117--218. Birkh"auser, Basel, 2005.
[GS83]
Narain Gupta and Sa"id Sidki.
On the Burnside problem for periodic groups.
Math. Z., 182(3):385--388, 1983.
[GS06a]
Rostislav Grigorchuk and Zoran \vSuni&kacute;.
Asymptotic aspects of Schreier graphs and Hanoi Towers groups.
C. R. Math. Acad. Sci. Paris, 342(8):545--550, 2006.
[GS06b]
Rostislav Grigorchuk and Zoran \vSuni&kacute;.
Hanoi towers groups.
preprint, 2006.
[GSS07]
Rostislav Grigorchuk, Dmytro Savchuk, and Zoran \vSunić.
The spectral problem, substitutions and iterated monodromy.
CRM Proceedings and Lecture Notes, 42(8):225--248, 2007.
[GZ02a]
Rostislav I. Grigorchuk and Andrzej Zuk.
On a torsion-free weakly branch group defined by a three state automaton.
Internat. J. Algebra Comput., 12(1-2):223--246, 2002.
[GZ02b]
Rostislav I. Grigorchuk and Andrzej Zuk.
Spectral properties of a torsion-free weakly branch group defined by a three state automaton.
In Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), volume 298 of Contemp. Math., pages 57--82. Amer. Math. Soc., Providence, RI, 2002.
[Nek07]
Volodymyr Nekrashevych.
A minimal Cantor set in the space of 3-generated groups.
Geom. Dedicata, 124:153--190, 2007.
[Sid00]
Said Sidki.
Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity.
J. Math. Sci. (New York), 100(1):1925--1943, 2000.
[Sus79]
V. I. Sushchansky.
Periodic permutation p-groups and the unrestricted Burnside problem.
DAN SSSR., 247(3):557--562, 1979.
(in Russian).
[VV05]
M. Vorobets and Ya. Vorobets.
On a free group of transformations defined by an automaton, 2005.
To appear in Geom. Dedicata. (available at http://arxiv.org/abs/math/0601231).
[Wil04]
John S. Wilson.
On exponential growth and uniformly exponential growth for groups.
Invent. Math., 155(2):287--303, 2004.

[Up]

automgrp manual
September 2008