6 Finite regular languages
This chapter describes some functions to deal with finite regular languages.
6.1 Dealing with finite regular languages
6.1-1 IsFiniteRegularLanguage
> IsFiniteRegularLanguage ( L ) | ( function ) |
L is an automaton or a rational expression. This function tests whether its argument represents a finite language or not.
gap> RandomRatExp(2);
b*(aU@)
gap> IsFiniteRegularLanguage(last);
false
gap> RandomRatExp(2);
aUbU@
gap> IsFiniteRegularLanguage(last);
true
|
6.1-2 FiniteRegularLanguageToListOfWords
> FiniteRegularLanguageToListOfWords ( L ) | ( function ) |
L is an automaton or a rational expression. This function outputs the recognized language as a list of words.
gap> r:=RationalExpression("aaUx(aUb)");
aaUx(aUb)
gap> FiniteRegularLanguageToListOfWords(r);
[ "aa", "xa", "xb" ]
|
6.1-3 ListOfWordsToAutomaton
> ListOfWordsToAutomaton ( alph, L ) | ( function ) |
Given an alphabet alph (a list) and a list of words L (a list of lists), outputs an automaton that recognizes the given list of words.
gap> ListOfWordsToAutomaton("ab",["aaa","bba",""]);
< deterministic automaton on 2 letters with 6 states >
gap> FAtoRatExp(last);
(bbUaa)aU@
|