References

[C98] Carter, R. W. Representations of simple Lie algebras: modern variations on a classical theme in , Algebraic groups and their representations (Cambridge, 1997), Kluwer Acad. Publ., Dordrecht, (1998), p. 151--173

[C06] Committee, E. A note on the paper: ``A survey of the work of George Lusztig'' by R. W. Carter [Nagoya Math. J. \bf 182 (2006), 1--45; \refcno 2235338], Nagoya Math. J., 183, (2006), p. i--ii

[G01] Graaf, W. A. d. Computing with quantized enveloping algebras: PBW-type bases, highest-weight modules, $R$-matrices, J. Symbolic Comput., 32 (5), (2001), p. 475--490

[G02] Graaf, W. A. d. Constructing canonical bases of quantized enveloping algebras, Experimental Mathematics, 11 (2), (2002), p. 161--170

[H90] Humphreys, J. E. Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, (1990)

[J96] Jantzen, J. C. Lectures on Quantum Groups, American Mathematical Society, Graduate Studies in Mathematics, 6, (1996)

[K96] Kashiwara, M. Similarity of crystal bases in , Lie algebras and their representations (Seoul, 1995), Amer. Math. Soc., Providence, RI, (1996), p. 177--186

[L94] Littelmann, P. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1-3), (1994), p. 329--346

[L95] Littelmann, P. Paths and root operators in representation theory, Ann. of Math. (2), 142 (3), (1995), p. 499--525

[L98] Littelmann, P. Cones, crystals, and patterns, Transform. Groups, 3 (2), (1998), p. 145--179

[LN01] Lübeck, F. and Neunhöffer, M. GAPDoc, a GAP documentation meta-package, (2001)

[L90] Lusztig, G. Quantum groups at roots of $1$, Geom. Dedicata, 35 (1-3), (1990), p. 89--113

[L0a] Lusztig, G. Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (2), (1990a), p. 447--498

[L92] Lusztig, G. Introduction to quantized enveloping algebras in , New developments in Lie theory and their applications (Córdoba, 1989), Birkhäuser Boston, Boston, MA, (1992), p. 49--65

[L93] Lusztig, G. Introduction to quantum groups, Birkhäuser Boston Inc., Boston, MA, (1993)

[L96] Lusztig, G. Braid group action and canonical bases, Adv. Math., 122 (2), (1996), p. 237--261

[R91] Rosso, M. Représentations des groupes quantiques, Astérisque (201-203), (1991), p. Exp.\ No.\ 744, 443--483 (1992)
(Séminaire Bourbaki, Vol.\ 1990/91)

[S01] Stembridge, J. R. Computational aspects of root systems, Coxeter groups, and Weyl characters in , Interaction of combinatorics and representation theory, Math. Soc. Japan, MSJ Mem., 11, Tokyo, (2001), p. 1--38




generated by GAPDoc2HTML