4. Functionality

4.1 Functions for creating forms

4.1-1 BilinearFormByMatrix
> BilinearFormByMatrix( m, f )( operation )

Returns: a bilinear form

The argument m must be a square matrix over the finite field f. The field must be specified, as only the characteristic of the underlying field can be determined by the entries of m. The output will be a record rec( matrix, basefield, type ).


gap> gf := GF(3^2);
GF(3^2)
gap> mat := IdentityMat(4, gf);
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> f := BilinearFormByMatrix( mat, gf );
< bilinear form >
gap> Display(f);
Bilinear form
Gram Matrix:
 1 . . .
 . 1 . .
 . . 1 .
 . . . 1

4.1-2 QuadraticFormByMatrix
> QuadraticFormByMatrix( m, f )( operation )

Returns: a quadratic form

The argument m must be a square matrix over the finite field f. The field must be specified, as only the characteristic of the underlying field can be determined by the entries of m. The output will be a record rec( matrix, basefield, type ).


gap> gf := GF(2^2);
GF(2^2)
gap> mat := InvariantQuadraticForm( SO(-1, 4, 4) )!.matrix;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
  [ 0*Z(2), 0*Z(2), Z(2^2)^2, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2^2)^2 ] ]
gap> f := QuadraticFormByMatrix( mat, gf );
< quadratic form >
gap> Display(f);
Quadratic form
Gram Matrix:
z = Z(4)
   .   1   .   .
   .   .   .   .
   .   . z^2   1
   .   .   . z^2

4.1-3 HermitianFormByMatrix
> HermitianFormByMatrix( m, f )( operation )

Returns: a quadratic form

The argument m must be a square matrix over the finite field f of square order. The field must be specified, as only the characteristic of the underlying field can be determined by the entries of m. The output will be a record rec( matrix, basefield, type ).


gap> gf := GF(3^2);
gap> mat := IdentityMat(4, gf);
gap> f := HermitianFormByMatrix( mat, gf );
< hermitian form >
gap> Display(f);
Hermitian form
Gram Matrix:
 1 . . .
 . 1 . .
 . . 1 .
 . . . 1
Witt Index: 2

4.1-4 BilinearFormByPolynomial
> BilinearFormByPolynomial( poly, r, n )( operation )
> BilinearFormByPolynomial( poly, r )( operation )

Returns: a bilinear form

The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument is the dimension for the underlying vector space of the resulting form, which by default is the number of indeterminates specified by poly.


gap> r := PolynomialRing( GF(11), 4);
GF(11)[x_1,x_2,x_3,x_4]
gap> vars := IndeterminatesOfPolynomialRing( r );
[ x_1, x_2, x_3, x_4 ]
gap> pol := vars[1]*vars[2]+vars[3]*vars[4];
x_1*x_2+x_3*x_4
gap> form := BilinearFormByPolynomial(pol, r, 4);
< bilinear form >
gap> Display(form);
Bilinear form
Gram Matrix:
  .  6  .  .
  6  .  .  .
  .  .  .  6
  .  .  6  .
Polynomial: x_1*x_2+x_3*x_4
gap> ## Projective Points...
gap> projpoints := List(Subspaces( GF(11)^4, 1 ), Representative);;
gap> ## Number of totally isotropic points
gap> Number(projpoints, t -> IsZero( [t, t]^form ));
144

4.1-5 QuadraticFormByPolynomial
> QuadraticFormByPolynomial( poly, r, n )( operation )
> QuadraticFormByPolynomial( poly, r )( operation )

Returns: a quadratic form

The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument is the dimension for the underlying vector space of the resulting form, which by default is the number of indeterminates specified by poly.


gap> r := PolynomialRing( GF(8), 3);
GF(2^3)[x_1,x_2,x_3]
gap> poly := r.1^2 + r.2^2 + r.3^2;
x_1^2+x_2^2+x_3^2
gap> form := QuadraticFormByPolynomial(poly, r);
< quadratic form >
gap> RadicalOfForm(form);
<vector space over GF(2^3), with 3 generators>

4.1-6 HermitianFormByPolynomial
> HermitianFormByPolynomial( poly, r, n )( operation )
> HermitianFormByPolynomial( poly, r )( operation )

Returns: an hermitian form

The argument poly must be a polynomial in the polynomial ring r (defined over a finite field of square order). The (optional) last argument is the dimension for the underlying vector space of the resulting form, which by default is the number of indeterminates specified by poly.


gap> r := PolynomialRing( GF(9), 4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> vars := IndeterminatesOfPolynomialRing( r );
[ x_1, x_2, x_3, x_4 ]
gap> poly := vars[1]*vars[2]^3+vars[1]^3*vars[2]+vars[3]*vars[4]^3+vars[3]^3*vars[4];
x_1^3*x_2+x_1*x_2^3+x_3^3*x_4+x_3*x_4^3
gap> form := HermitianFormByPolynomial(poly,r);
< hermitian form >
gap> Display(form);
Hermitian form
Gram Matrix:
 . 1 . .
 1 . . .
 . . . 1
 . . 1 .
Polynomial: x_1^3*x_2+x_1*x_2^3+x_3^3*x_4+x_3*x_4^3

4.2 Attributes and properties of forms

4.2-1 IsReflexiveForm
> IsReflexiveForm( f )( attribute )

Returns: true or false.

A sesquilinear form f is reflexive if whenever we have f(u,v)=0, then we also have f(v,u)=0. This operation simply returns true or false.

4.2-2 IsAlternatingForm
> IsAlternatingForm( f )( attribute )

Returns: true or false.

A bilinear form f is alternating if f(v,v)=0 for all v. This operation simply returns true or false.

4.2-3 IsSymmetricForm
> IsSymmetricForm( f )( attribute )

Returns: true or false.

A bilinear form f is symmetric if f(u,v)=f(v,u) for all pairs of vectors u and v. This operation simply returns true or false.

4.2-4 IsDegenerateForm
> IsDegenerateForm( f )( attribute )

Returns: true or false.

A sesquilinear form f is degenerate if there exists a nonzero vector v which is orthogonal to every other vector. That is, f(v,w)=0 for all w. Likewise, a quadratic form Q is degenerate if there is a nonzero vector v such that Q(v)=0. This operation simply returns true or false.

4.2-5 BaseField
> BaseField( f )( attribute )

Returns: the underlying field of f.

4.2-6 GramMatrix
> GramMatrix( f )( attribute )

Returns: the associated Gram matrix of f.

4.2-7 WittIndex
> WittIndex( f )( attribute )

Returns: the Witt index of f.

The Witt index is the maximum dimension of a totally singular subspace. So for example, if f is a symplectic form and d is the dimension of its underlying vector space, then the Witt index of f is d/2.

4.2-8 RadicalOfForm
> RadicalOfForm( f )( attribute )

Returns: a subspace, the radical, of the vectors space associated with f.


gap> r := PolynomialRing( GF(8), 3 );
GF(2^3)[x_1,x_2,x_3]
gap> poly := r.1^2 + r.2 * r.3;
x_1^2+x_2*x_3
gap> form := QuadraticFormByPolynomial( poly, r );
< quadratic form >
gap> RadicalOfForm( form );
<vector space of dimension 1 over GF(2^3)>

4.2-9 PolynomialOfForm
> PolynomialOfForm( f )( attribute )

Returns: the polynomial associated with f.

 
gap> mat := [ [ Z(8) , 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
 [ 0*Z(2), Z(2)^0, Z(2^3)^5, 0*Z(2), 0*Z(2) ], 
 [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
 [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
 [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ];;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> PolynomialOfForm(form);
Z(2^3)*x_1^2+x_2^2+Z(2^3)^5*x_2*x_3+x_4*x_5

4.2-10 DiscriminantOfForm
> DiscriminantOfForm( f )( attribute )

Returns: a string

Given a quadratic or sesquilinear form f, this operation returns a string: ``square'' or ``nonsquare''. Discriminants can be used to delineate the isometry type of an orthogonal form in even (algebraic) dimension.


gap> gram := InvariantQuadraticForm(GO(-1,4,5))!.matrix;;
gap> f := QuadraticFormByMatrix(gram, GF(5));
< quadratic form >
gap> DiscriminantOfForm(f);
"nonsquare"

4.3 Functions for changing forms

4.3-1 BaseChangeToCanonical
> BaseChangeToCanonical( f )( operation )

Returns: a base-transition matrix

The argument f is a sesquilinear or quadratic form. For every isometry class of forms, there is a canonical representative, which is in block diagonal form. If M is the Gram matrix of the form f, then b * M * TransposedMat(b) is the Gram matrix of the canonical representative.


gap> f := GF(3);
GF(3)
gap> gram := [
[0,0,0,1,0,0], 
[0,0,0,0,1,0],
[0,0,0,0,0,1],
[-1,0,0,0,0,0],
[0,-1,0,0,0,0],
[0,0,-1,0,0,0]] * One(f);;
gap> form := BilinearFormByMatrix( gram, f );
< bilinear form >
gap> b := BaseChangeToCanonical( form );;
gap> Display( b * gram * TransposedMat(b) );
 . 1 . . . .
 2 . . . . .
 . . . 1 . .
 . . 2 . . .
 . . . . . 1
 . . . . 2 .

4.3-2 IsometricCanonicalForm
> IsometricCanonicalForm( f )( attribute )

Returns: the canonical form isometric to the sesquilinear or quadratic form f.

For every isometry type of sesquilinear or quadratic form, there is a canonical one. In Forms, the canonical form of each class is that which preserves the natural hyperbolic line decomposition (see Secton 3.5).


gap> mat := [ [ Z(8) , 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
[ 0*Z(2), Z(2)^0, Z(2^3)^5, 0*Z(2), 0*Z(2) ], 
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ];;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> iso := IsometricCanonicalForm(form);
< quadratic form >
gap> Display(form);
Quadratic form
Gram Matrix:
z = Z(8)
 z^1   .   .   .   .
   .   1 z^5   .   .
   .   .   .   .   .
   .   .   .   .   1
   .   .   .   .   .
Witt Index: 2
gap> Display(iso);
Quadratic form
Gram Matrix:
 1 . . . .
 . . 1 . .
 . . . . .
 . . . . 1
 . . . . .
Witt Index: 2

4.4 Operations on forms

4.4-1 BaseChangeHomomorphism
> BaseChangeHomomorphism( b, gf )( operation )

Returns: the inner automorphism of GL(d,q) associated to the base-transition b.

The argument b must be an invertible matrix over the finite field gf.


gap> gl:=GL(3,3);
GL(3,3)
gap> go:=GO(3,3);
GO(0,3,3)
gap> gram:=InvariantBilinearForm(go)!.matrix;
[ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3) ] ]
gap> f:=FormByMatrix(gram,GF(3),"parabolic");
< bilinear form >
gap> b:=BaseChangeToCanonical(f);;
gap> hom := BaseChangeHomomorphism(b, GF(3));
^[ [ 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3) ] ]
gap> newgo := Image(hom, go); 
Group(
[ [ [ Z(3)^0, 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3) ] ], 
  [ [ Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, Z(3) ] ] ])
gap> gens:=GeneratorsOfGroup(newgo);;
gap> canonical := b * gram * TransposedMat(b);
[ [ Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3)^0, 0*Z(3) ] ]
gap> ForAll(gens, y -> y * canonical * TransposedMat(y) = canonical);
true

4.4-2 EvaluateForm
> EvaluateForm( f, u, v )( operation )
> EvaluateForm( f, u )( operation )

Returns: a finite field element

The argument f is either a sesquilinear or quadratic form defined over a finite field GF(q). The other argument is a pair of vectors or matrices, or a single vector or matrix, which represent the bases of given subspaces of GF(q)^d. There is also an overloading of the operation \^ which we show in the following example:


gap> mat := [[Z(8),0,0,0],[0,0,Z(8)^4,0],[0,0,0,1],[0,0,0,0]]*Z(8)^0;;
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> u := [ Z(2^3)^4, Z(2^3)^4, Z(2)^0, Z(2^3)^3 ];
[ Z(2^3)^4, Z(2^3)^4, Z(2)^0, Z(2^3)^3 ]
gap> EvaluateForm( form, u );
Z(2^3)^6
gap> u^form;
Z(2^3)^6

Here is an example using sesquilinear forms...


gap> gram := [[0,0,0,0,0,2],[0,0,0,0,2,0],[0,0,0,1,0,0],[0,0,1,0,0,0],
 [0,2,0,0,0,0],[2,0,0,0,0,0]]*Z(3)^0;;
gap> form := BilinearFormByMatrix(gram,GF(3));
< bilinear form >
gap> u := [ [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
  [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ] ];;
gap> v := [ [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3), 0*Z(3), Z(3) ], 
  [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3), Z(3) ] ];;
gap> EvaluateForm( form, u, v);
[ [ Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3) ] ]
gap> [u,v]^form;
[ [ Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3) ] ]




generated by GAPDoc2HTML