loops : a GAP 4 package - Index I
_
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
Inner mapping groups 6.6
InnerMappingGroup 6.6.1
Installation 1.1
Interesting loops 9.9
InterestingLoop 9.9.1
Introduction 1.0
Inverse 5.3.1
Inverse properties 7.2
IsALoop 7.7.4
IsAlternative 7.4.1
IsAssociative 7.1.1
IsCCLoop 7.6.1
IsCLoop 7.4.1
IsCodeLoop 7.7.1
IsCommutative 7.1.1
IsDiassociative 7.1.2
IsDistributive 7.3.3
IsEntropic 7.3.3
IsExtraLoop 7.4.1
IsFlexible 7.4.1
IsIdempotent 7.3.2
IsLCCLoop 7.6.1
IsLCLoop 7.4.1
IsLDistributive 7.3.4
IsLeftALoop 7.7.4
IsLeftAlternative 7.4.1
IsLeftBolLoop 7.4.1
IsLeftBruckLoop 7.7.3
IsLeftDistributive 7.3.3
IsLeftKLoop 7.7.3
IsLeftNuclearSquareLoop 7.4.1
IsLeftPowerAlternative 7.5.1
IsLoopCayleyTable 4.2.2
IsLoopTable 4.2.2
IsMedial 7.3.3
IsMiddleALoop 7.7.4
IsMiddleNuclearSquareLoop 7.4.1
IsMoufangLoop 7.4.1
IsNilpotent 6.10.1
IsNormal 6.8.1
IsNuclearSquareLoop 7.4.1
IsomorphicCopyByNormalSubloop 6.12.5
IsomorphicCopyByPerm 6.12.4
IsomorphismLoops 6.12.1
Isomorphisms and automorphisms 6.12
IsOsbornLoop 7.6.2
IsotopismLoops 6.14.1
Isotopisms 6.14
IsPowerAlternative 7.5.1
IsPowerAssociative 7.1.2
IsQuasigroupCayleyTable 4.2.1
IsQuasigroupTable 4.2.1
IsRCCLoop 7.6.1
IsRCLoop 7.4.1
IsRDistributive 7.3.4
IsRightALoop 7.7.4
IsRightAlternative 7.4.1
IsRightBolLoop 7.4.1
IsRightBruckLoop 7.7.3
IsRightDistributive 7.3.3
IsRightKLoop 7.7.3
IsRightNuclearSquareLoop 7.4.1
IsRightPowerAlternative 7.5.1
IsSemisymmetric 7.3.1
IsSimple 6.8.3
IsSolvable 6.11.1
IsSteinerLoop 7.7.2
IsSteinerQuasigroup 7.3.2
IsStronglyNilpotent 6.10.2
IsSubloop 6.3.2
IsSubquasigroup 6.3.2
IsTotallySymmetric 7.3.1
IsUnipotent 7.3.2
ItpSmallLoop 9.10.1
[Up]
loops manual
March 2008