It is possible to get informations about the status of the computation of the functions of Chapter 2 of this manual.
InfoPolenta
is the Info class of the Polenta package (for more details on the Info mechanism see Section Info Functions of the
GAP Reference Manual).
With the help of the function
SetInfoLevel(InfoPolenta,
level)
you can change
the info level of InfoPolenta
.
InfoLevel( InfoPolenta )
is equal to 0
then no information
messages are displayed.
InfoLevel( InfoPolenta )
is equal to 1 then basic informations
about the process are provided. For further background on the displayed
informations we refer to Assmann (publicly available via the
Internet address http://cayley.math.nat.tu-bs.de/software/assmann/
).
InfoLevel( InfoPolenta )
is equal to 2 then, in addition to the
basic information, the generators of computed subgroups and module series
are displayed.
gap> SetInfoLevel( InfoPolenta, 1 ); gap> PcpGroupByMatGroup( PolExamples(11) ); #I Determine a constructive polycyclic sequence for the input group ... #I #I Chosen admissible prime: 3 #I #I Determine a constructive polycyclic sequence for the image under the p-congruence homomorphism ... #I finished. #I Finite image has relative orders [ 3, 2, 3, 3, 3 ]. #I #I Compute normal subgroup generators for the kernel of the p-congruence homomorphism ... #I finished. #I #I Compute the radical series ... #I finished. #I The radical series has length 4. #I #I Compute the composition series ... #I finished. #I The composition series has length 5. #I #I Compute a constructive polycyclic sequence for the induced action of the kernel to the composition series ... #I finished. #I This polycyclic sequence has relative orders [ ]. #I #I Calculate normal subgroup generators for the unipotent part ... #I finished. #I #I Determine a constructive polycyclic sequence for the unipotent part ... #I finished. #I The unipotent part has relative orders #I [ 0, 0, 0 ]. #I #I ... computation of a constructive polycyclic sequence for the whole group finished. #I #I Compute the relations of the polycyclic presentation of the group ... #I Compute power relations ... #I ... finished. #I Compute conjugation relations ... #I ... finished. #I Update polycyclic collector ... #I ... finished. #I finished. #I #I Construct the polycyclic presented group ... #I finished. #I Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ] gap> SetInfoLevel( InfoPolenta, 2 ); gap> PcpGroupByMatGroup( PolExamples(11) ); #I Determine a constructive polycyclic sequence for the input group ... #I #I Chosen admissible prime: 3 #I #I Determine a constructive polycyclic sequence for the image under the p-congruence homomorphism ... #I finished. #I Finite image has relative orders [ 3, 2, 3, 3, 3 ]. #I #I Compute normal subgroup generators for the kernel of the p-congruence homomorphism ... #I finished. #I The normal subgroup generators are #I [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ], [ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ] , [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ] #I #I Compute the radical series ... #I finished. #I The radical series has length 4. #I The radical series is #I [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ], [ ] ] #I #I Compute the composition series ... #I finished. #I The composition series has length 5. #I The composition series is #I [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ], [ ] ] #I #I Compute a constructive polycyclic sequence for the induced action of the kernel to the composition series ... #I finished. #I This polycyclic sequence has relative orders [ ]. #I #I Calculate normal subgroup generators for the unipotent part ... #I finished. #I The normal subgroup generators for the unipotent part are #I [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ], [ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ] , [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ], [ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ], [ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ] #I #I Determine a constructive polycyclic sequence for the unipotent part ... #I finished. #I The unipotent part has relative orders #I [ 0, 0, 0 ]. #I #I ... computation of a constructive polycyclic sequence for the whole group finished. #I #I Compute the relations of the polycyclic presentation of the group ... #I Compute power relations ... ..... #I ... finished. #I Compute conjugation relations ... .............................................. #I ... finished. #I Update polycyclic collector ... #I ... finished. #I finished. #I #I Construct the polycyclic presented group ... #I finished. #I Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]
Polenta manual