Goto Chapter: Top 1 2 3 4 Bib Ind
 Top of Book   Previous Chapter   Next Chapter 

References

[AK00] Amberg, B. and Kazarin, L. S. On the adjoint group of a finite nilpotent p-algebra, J. Math. Sci. (New York), 102 (3), (2000), p. 3979--3997.

[AS01] Amberg, B. and Sysak, Y. P. Radical rings and their adjoint groups, in Topics in infinite groups, Dept. Math., Seconda Univ. Napoli, Caserta, Quad. Mat., 8, (2001), p. 21--43.

[AS02] Amberg, B. and Sysak, Y. P. Radical rings with soluble adjoint groups, J. Algebra, 247 (2), (2002), p. 692--702.

[AS04] Amberg, B. and Sysak, Y. P. Associative rings with metabelian adjoint group, J. Algebra, 277 (2), (2004), p. 456--473.

[AI97] Artemovych, O. D. and Ishchuk, Y. B. On semiperfect rings determined by adjoint groups, Mat. Stud., 8 (2), (1997), p. 162--170, 237.

[Gor95] Gorlov, V. O. Finite nilpotent algebras with a metacyclic quasiregular group, Ukra\"\i n. Mat. Zh., 47 (10), (1995), p. 1426--1431.

[KS04] Kazarin, L. S. and Soules, P. Finite nilpotent p-algebras whose adjoint group has three generators, JP J. Algebra Number Theory Appl., 4 (1), (2004), p. 113--127.

[PS97] Popovich, S. V. and Sysak, Y. P. Radical algebras whose subgroups of adjoint groups are subalgebras, Ukra\"\i n. Mat. Zh., 49 (12), (1997), p. 1646--1652.

 Top of Book   Previous Chapter   Next Chapter 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML