Multiplicity-Free Permutation Characters in GAP, part 2
THOMAS BREUER
Lehrstuhl D für Mathematik
RWTH, 52056 Aachen, Germany
July 21th, 2003
We complete the classification of the multiplicity-free permutation
actions of nearly simple groups that involve a sporadic simple group,
which had been started in [BL96] and [LM].
Contents
1 Introduction
2 The Approach
2.1 Computing Possible Permutation Characters
2.2 Verifying the Candidates
2.3 Isoclinic Groups
2.4 Tests for GAP
3 The Groups
3.1 G = 2.M12
3.2 G = 2.M12.2
3.3 G = 2.M22
3.4 G = 2.M22.2
3.5 G = 3.M22
3.6 G = 3.M22.2
3.7 G = 4.M22 and G = 12.M22
3.8 G = 4.M22.2 and G = 12.M22.2
3.9 G = 6.M22
3.10 G = 6.M22.2
3.11 G = 2.J2
3.12 G = 2.J2.2
3.13 G = 2.HS
3.14 G = 2.HS.2
3.15 G = 3.J3
3.16 G = 3.J3.2
3.17 G = 3.McL
3.18 G = 3.McL.2
3.19 G = 2.Ru
3.20 G = 2.Suz
3.21 G = 2.Suz.2
3.22 G = 3.Suz
3.23 G = 3.Suz.2
3.24 G = 6.Suz
3.25 G = 6.Suz.2
3.26 G = 3.ON
3.27 G = 3.ON.2
3.28 G = 2.Fi22
3.29 G = 2.Fi22.2
3.30 G = 3.Fi22
3.31 G = 3.Fi22.2
3.32 G = 6.Fi22
3.33 G = 6.Fi22.2
3.34 G = 2.Co1
3.35 G = 3.F3+
3.36 G = 3.F3+.2
3.37 G = 2.B
4 Appendix: Explicit Computations with Groups
4.1 24:A6 type subgroups in 2.M22
4.2 24:S5 type subgroups in M22.2
1 Introduction
In [BL96], the multiplicity-free permutation characters of the sporadic
simple groups and their automorphism groups were classified.
Based on this list,
the multiplicity-free permutation characters of the central extensions of the
sporadic simple groups were classified in [LM].
The purpose of this writeup is to show how the multiplicity-free
permutation characters of the automorphic extensions of the central
extensions of the sporadic simple groups can be computed,
to verify the calculations in [LM] (and to correct an error,
see Section 3.32),
and to provide a testfile for the GAP functions and the database.
The database has been extended in the sense that also most of the character
tables of the multiplicity-free permutation modules of the sporadic simple
groups and their automorphic and central extensions have been computed,
see [Höh01,Mül03] for details.
2 The Approach
Suppose that a group G contains a normal subgroup N.
If π is a faithful multiplicity-free permutation character of G
then π = 1UG for a subgroup U of G that intersects N trivially,
so π contains a constituent 1UNG of degree π(1) / |N|,
which can be viewed as a multiplicity-free permutation character of the
factor group G / N.
Moreover, no constituent of the difference π− 1UNG has N in its
kernel.
So if we know all multiplicity-free permutation characters of the factor group
G / N then we can compute all candidates for multiplicity-free permutation
characters of G by "filling up" each such character
[π] with a linear combination of characters not containing N
in their kernels, of total degree (|N|−1) ·π(1), and such that the
sum is a possible permutation character of G.
For this situation, GAP provides a special variant of the function
PermChars.
In a second step, the candidates are inspected whether the required point
stabilizers (and if yes, how many conjugacy classes of them) exist.
Finally, the permutation characters are verified by explicit induction from
the character tables of the point stabilizers.
The multiplicity-free permutation actions of the sporadic simple groups
and their automorphism groups are known by [BL96],
so this approach is suitable for these groups.
For central extensions of sporadic simple groups, the multiplicity-free
permutation characters have been classified in [LM];
this note describes a slightly different approach,
so we will give an independent confirmation of their results.
First we load the Character Table Library [Bre04b]
of the GAP system [GAP04],
read the file with GAP functions for computing multiplicity-free
permutation characters,
and the known data for the sporadic simple groups and their automorphism
groups.
gap> LoadPackage( "ctbllib" );
true
gap> RereadPackage( "ctbllib", "tst/multfree.g" );
true
gap> RereadPackage( "ctbllib", "tst/multfree.dat" );
true
In order to compare the results computed below with the database that is
already available, we load also this database.
gap> RereadPackage( "ctbllib", "tst/multfre2.dat" );
true
2.1 Computing Possible Permutation Characters
Then we define the GAP functions that are needed in the following.
FaithfulCandidates takes the character table tbl of a group G
and the name factname of a factor group F of G for which the
multiplicity-free permutation characters are known,
and returns a list of lists, the entry at the i-th position being
the list of possible permutation characters of G that are multiplicity-free
and such that the sum of all constituents that are characters of F is the
i-th multiplicity-free permutation character of F.
As a side-effect, if the i-th entry is nonempty then information is printed
about the structure of the point-stabilizer in F and the number of
candidates found.
gap> FaithfulCandidates:= function( tbl, factname )
> local factinfo, factchars, facttbl, fus, sizeN, faith, i;
>
> # Fetch the data for the factor group.
> factinfo:= MultFreePermChars( factname );
> factchars:= List( factinfo, x -> x.character );
> facttbl:= UnderlyingCharacterTable( factchars[1] );
> fus:= GetFusionMap( tbl, facttbl );
> sizeN:= Size( tbl ) / Size( facttbl );
>
> # Compute faithful possible permutation characters.
> faith:= List( factchars, pi -> PermChars( tbl,
> rec( torso:= [ sizeN * pi[1] ],
> normalsubgroup:= ClassPositionsOfKernel( fus ),
> nonfaithful:= pi{ fus } ) ) );
>
> # Take only the multiplicity-free ones.
> faith:= List( faith, x -> Filtered( x, pi -> ForAll( Irr( tbl ),
> chi -> ScalarProduct( tbl, pi, chi ) < 2 ) ) );
>
> # Print info about the candidates.
> for i in [ 1 .. Length( faith ) ] do
> if not IsEmpty( faith[i] ) then
> Print( i, ": subgroup ", factinfo[i].subgroup,
> ", degree ", faith[i][1][1],
> " (", Length( faith[i] ), " cand.)\n" );
> fi;
> od;
>
> # Return the candidates.
> return faith;
> end;;
2.2 Verifying the Candidates
In the verification step, we check which of the given candidates of G
are induced from a given subgroup S.
For that, we use the following function.
Its arguments are the character table s of S,
the character tables tbl2 and tbl of G and its derived subgroup
G′ of index 2
(if G is perfect then 0 must be entered for tbl2),
the list candidates of characters of G,
and one of the strings "all", "extending", which means that we consider
either all possible class fusions of s into tbl2 or only those whose
image does not lie in G′.
Note that the table of the derived subgroup of G is needed because
we want to express the decomposition of the permutation characters
relative to G′.
The idea is that we know that n different permutation characters arise
from subgroups isomorphic with S (with the additional property that the
image of the embedding of S into G is not contained in G′
if the last argument is "extending"), and that candidates is a set
of possible permutation characters, of length n.
If the possible fusions between the character tables s and tbl2
lead to exactly to the given n permutation characters then we have proved
that they are in fact the permutation characters of G in question.
In this case, VerifyCandidates prints information about the decomposition
of the permutation characters.
If none of candidates arises from the possible embeddings of S into G
then the function prints that S does not occur.
In all other cases, the function signals an error (so this will not happen
in the calls to this function below).
gap> VerifyCandidates:= function( s, tbl, tbl2, candidates, admissible )
> local fus, der, pi;
>
> if tbl2 = 0 then
> tbl2:= tbl;
> fi;
>
> # Compute the possible class fusions, and induce the trivial character.
> fus:= PossibleClassFusions( s, tbl2 );
> if admissible = "extending" then
> der:= Set( GetFusionMap( tbl, tbl2 ) );
> fus:= Filtered( fus, map -> not IsSubset( der, map ) );
> fi;
> pi:= Set( List( fus, map -> Induced( s, tbl2,
> [ TrivialCharacter( s ) ], map )[1] ) );
>
> # Compare the two lists.
> if pi = SortedList( candidates ) then
> Print( "G = ", Identifier( tbl2 ), ": point stabilizer ",
> Identifier( s ), ", ranks ",
> List( pi, x -> Length( ConstituentsOfCharacter(x) ) ), "\n" );
> if Size( tbl ) = Size( tbl2 ) then
> Print( PermCharInfo( tbl, pi ).ATLAS, "\n" );
> else
> Print( PermCharInfoRelative( tbl, tbl2, pi ).ATLAS, "\n" );
> fi;
> elif IsEmpty( Intersection( pi, candidates ) ) then
> Print( "G = ", Identifier( tbl2 ), ": no ", Identifier( s ), "\n" );
> else
> Error( "problem with verify" );
> fi;
> end;;
Since in most cases the character tables of possible point stabilizers
are contained in the GAP Character Table Library,
the above function provides an easy test.
Alternatively, we could compute all faithful possible permutation
characters (not only the multiplicity-free ones)
of the degree in question;
if there are as many different such characters as are known to be induced
from point stabilizers and if no other subgroups of this index
exist then the characters are indeed permutation characters,
and we can compare them with the multiplicity-free characters computed
before.
In the verification of the candidates, the following situations occur.
Lemma 1
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) cyclic of order m,
and let H be a subgroup of G such that m is coprime to the order
of the commutator factor group of H.
If it is known that Φ−1(H) is a direct product of H with K
then the preimages under Φ of the G-conjugates of H
in [^G] contain one [^G]-class of subgroups
that are isomorphic with H and intersect trivially with K.
(This holds for example if the order of the Schur multiplier of H
is coprime to m.)
Lemma 2
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) of order 3, such that the derived subgroup
G′ of G has index 2 in G
and such that K is not central in G.
Consider a subgroup H of G with a subgroup H0 = H ∩G′
of index 2 in H, and such that it is known that the preimage
Φ−1(H0) is a direct product of H0 with K.
(This holds for example if the order of the Schur multiplier of H0
is coprime to 3.)
Then each complement of K in Φ−1(H0)
extends in Φ−1(H) to exactly one complement of K
that is isomorphic with H.
Lemma 3
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) of order 2.
Consider a subgroup H of G, with derived subgroup H′
of index 2 in H and such that
Φ−1(H′) has the structure 2 ×H′.
(i)
Suppose that there is an element h ∈ H \H′
such that the squares of the preimages of h in [^G] lie in
the unique subgroup of index 2 in Φ−1(H′).
(This holds for example if the preimages of h are involutions.)
Then Φ−1(H) has the type K ×H.
(ii)
If Φ−1(H) has the type K ×H then
this group contains exactly two subgroups that are isomorphic with H.
(iii)
Suppose that case (ii) applies and that there is
h ∈ H \H′ whose two preimages are not conjugate
in [^G] and such that none of the two subgroups of the type H in
Φ−1(H) contains elements in the two conjugacy classes
that contain the preimages of h.
Then the two subgroups of the type H induce different permutation
characters of [^G], in particular exactly two conjugacy classes of
subgroups of the type H in [^G] arise from the conjugates of H
in G.
With character theoretic methods, we can check a weaker form of
Lemma 2.3 (i).
Namely, the conditions are clearly satisfied if there is a conjugacy class
C of elements in H that is not contained in H′
and such that the class of [^G] that
contains the squares of the preimages of C is not contained
in the images of the classes of 2 ×H′ that lie outside
H′.
The function CheckConditionsForLemma3 tests this, and prints a message
if Lemma 2.3 (i) applies becaue of this situation.
More precisely, the arguments are (in this order) the character tables of
H′, H, G, and [^G], and one of the strings "all",
"extending"; the last argument means that either all embeddings of H
into G are considered or only those which do not lie inside the
derived subgroup of G.
The function assumes that s0 is the character table of the derived
subgroup of s, and that H′ lifts to a direct product in [^G].
gap> CheckConditionsForLemma3:= function( s0, s, fact, tbl, admissible )
> local s0fuss, sfusfact, der, outerins, outerinfact, preim, squares, dp,
> dpfustbl, s0indp, other, goodclasses;
>
> if Size( s ) <> 2 * Size( s0 ) then
> Error( "<s> must be twice as large as <s0>" );
> fi;
>
> s0fuss:= GetFusionMap( s0, s );
> sfusfact:= PossibleClassFusions( s, fact );
> if admissible = "extending" then
> der:= ClassPositionsOfDerivedSubgroup( fact );
> sfusfact:= Filtered( sfusfact, map -> not IsSubset( der, map ) );
> fi;
> outerins:= Difference( [ 1 .. NrConjugacyClasses( s ) ], s0fuss );
> outerinfact:= Set( List( sfusfact, map -> Set( map{ outerins } ) ) );
> if Length( outerinfact ) <> 1 then
> Error( "classes of `", s, "' inside `", fact, "' not determined" );
> fi;
>
> preim:= Flat( InverseMap( GetFusionMap( tbl, fact ) ){ outerinfact[1] } );
> squares:= Set( PowerMap( tbl, 2 ){ preim } );
> dp:= s0 * CharacterTable( "Cyclic", 2 );
> dpfustbl:= PossibleClassFusions( dp, tbl );
> s0indp:= GetFusionMap( s0, dp );
> other:= Difference( [ 1 .. NrConjugacyClasses( dp ) ], s0indp );
> goodclasses:= List( dpfustbl, map -> Intersection( squares,
> Difference( map{ s0indp }, map{ other } ) ) );
> if not IsEmpty( Intersection( goodclasses ) ) then
> Print( Identifier( tbl ), ": ", Identifier( s ),
> " lifts to a direct product,\n",
> "proved by squares in ", Intersection( goodclasses ), ".\n" );
> elif ForAll( goodclasses, IsEmpty ) then
> Print( Identifier( tbl ), ": ", Identifier( s ),
> " lifts to a nonsplit extension.\n" );
> else
> Print( "sorry, no proof of the splitting!\n" );
> fi;
> end;;
Let us assume we are in the situation of Lemma 2.3.
Then Φ−1(H) is a direct product
〈z 〉×H, where z is an involution.
The derived subgroup of Φ−1(H) is H0 ≡ H′,
and Φ−1(H) contains two subgroups H1, H2
which are isomorphic with H,
and such that H2 = H0 ∪{ h z; h ∈ H1 \H0 }.
If the embedding of H1, say, into [^G] has the properties
that an element outside H0 is mapped into a class C of [^G]
that is different from z C and such that no element of H1 lies in z C
then z C contains element of H2 but C does not.
In particular, the permutation characters of the two actions of [^G]
on the cosets of H1 and H2, respectively, are necessarily different.
We check this with the following function.
Its arguments are one class fusion from the character table of H1 to that
of [^G], the factor fusion from the character table of [^G] to
that of G,
and the list of positions of the classes of H0 in the character table
of H1.
The return value is true if there are two different permutation characters,
and false if this cannot be proved using the criterion.
gap> NecessarilyDifferentPermChars:= function( fusion, factfus, inner )
> local outer, inv;
>
> outer:= Difference( [ 1 .. Length( fusion ) ], inner );
> fusion:= fusion{ outer };
> inv:= Filtered( InverseMap( factfus ), IsList );
> return ForAny( inv, pair -> Length( Intersection( pair, fusion ) ) = 1 );
> end;;
2.3 Isoclinic Groups
For dealing with the character tables of groups of the type 2.G.2 that are
isoclinic to those whose tables are printed in the ATLAS ([CCN+85]),
it is necessary to store explicitly the factor fusion from 2.G.2 onto G.2
and the subgroup fusion from 2.G into 2.G.2,
in order to make the above functions work.
Note that these maps coincide for the two isoclinism types.
gap> IsoclinicTable:= function( tbl, tbl2, facttbl )
> local subfus, factfus;
>
> subfus:= GetFusionMap( tbl, tbl2 );
> factfus:= GetFusionMap( tbl2, facttbl );
> tbl2:= CharacterTableIsoclinic( tbl2 );
> StoreFusion( tbl, subfus, tbl2 );
> StoreFusion( tbl2, factfus, facttbl );
> return tbl2;
> end;;
2.4 Tests for GAP
With the following function, we check whether the characters computed here
coincide with the lists computed in [LM].
gap> CompareWithDatabase:= function( name, chars )
> local info;
>
> info:= MultFreePermChars( name );
> info:= List( info, x -> x.character );;
> if SortedList( info ) <> SortedList( Concatenation( chars ) ) then
> Error( "contradiction 1 for ", name );
> fi;
> end;;
If the character tables of all maximal subgroups of G are known then
we could use alternatively the same method (and in fact the same GAP
functions) as in the classification in [BL96].
This is shown in the following sections where applicable,
using the following function.
gap> CompareWithCandidatesByMaxes:= function( name, faith )
> local tbl, poss;
>
> tbl:= CharacterTable( name );
> if not HasMaxes( tbl ) then
> Error( "no maxes stored for ", name );
> fi;
> poss:= PossiblePermutationCharactersWithBoundedMultiplicity( tbl, 1 );
> poss:= List( poss.permcand, l -> Filtered( l,
> pi -> ClassPositionsOfKernel( pi ) = [ 1 ] ) );
> if SortedList( Concatenation( poss ) )
> <> SortedList( Concatenation( faith ) ) then
> Error( "contradiction 2 for ", name );
> fi;
> end;;
3 The Groups
In the following,
we use ATLAS notation (see [CCN+85]) for the names of the groups.
In particular, 2 ×G and G ×2 denote the direct product
of the group G with a cyclic group of order 2,
and G.2 and 2.G denote an upward and downward extension, respectively,
of G by a cyclic group of order 2, such that these groups are not
direct products.
For groups of the structure 2.G.2 where the character table of G is
contained in the ATLAS, we use the name 2.G.2 for the isoclinism type
whose character table is printed in the ATLAS,
and (2.G.2)∗ for the other isoclinism type.
Most of the computations that are shown in the following use only information
from the GAP Character Table Library.
The (few) explicit computations with groups are collected in
Section 4.
3.1 G = 2.M12
The group 2.M12 has ten faithful multiplicity-free permutation actions,
with point stabilizers of the types M11 (twice),
A6.21 (twice), 32.2.S4 (four classes), and 32:2.A4 (twice).
gap> tbl:= CharacterTable( "2.M12" );;
gap> faith:= FaithfulCandidates( tbl, "M12" );;
1: subgroup $M_{11}$, degree 24 (1 cand.)
2: subgroup $M_{11}$, degree 24 (1 cand.)
5: subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
8: subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
11: subgroup $3^2.2.S_4$, degree 440 (2 cand.)
12: subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)
13: subgroup $3^2.2.S_4$, degree 440 (2 cand.)
14: subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)
There are two classes of M11 subgroups in M12 as well as in
2.M12, so we apply Lemma 2.1.
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
> Concatenation( faith[1], faith[2] ), "all" );
G = 2.M12: point stabilizer M11, ranks [ 3, 3 ]
[ "1a+11a+12a", "1a+11b+12a" ]
According to the list of maximal subgroups of 2.M12,
any A6.22 subgroup in M12 lifts to a group of the structure
A6.D8 in M12, which contains two conjugate subgroups of the type
A6.21; so we get two classes of such subgroups, with the same permutation
character.
gap> Maxes( tbl );
[ "2xM11", "2.M12M2", "A6.D8", "2.M12M4", "2.L2(11)", "2x3^2.2.S4",
"2.M12M7", "2.M12M8", "2.M12M9", "2.M12M10", "2.A4xS3" ]
gap> faith[5] = faith[8];
true
gap> VerifyCandidates( CharacterTable( "A6.2_1" ), tbl, 0, faith[5], "all" );
G = 2.M12: point stabilizer A6.2_1, ranks [ 7 ]
[ "1a+11ab+12a+54a+55a+120b" ]
The 32.2.S4 type subgroups of M12 lift to direct products with
the centre of 2.M12, each such group contains two subgroups of the type
32.2.S4 which induce different permutation characters,
for example because the involutions in 32.2.S4 \32.2.A4
lie in the two preimages of the class 2B of M12.
gap> s:= CharacterTable( "3^2.2.S4" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M12" );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, 0, Concatenation( faith[11], faith[13] ), "all" );
G = 2.M12: point stabilizer 3^2.2.S4, ranks [ 7, 7, 9, 9 ]
[ "1a+11a+54a+55a+99a+110ab", "1a+11b+54a+55a+99a+110ab",
"1a+11a+12a+44ab+54a+55a+99a+120b", "1a+11b+12a+44ab+54a+55a+99a+120b" ]
Each 32.2.S4 type group contains a unique subgroup of the type
32.2.A4, we get two classes of such subgroups, with
different permutation characters because already the corresponding characters
for M12 are different; we verify the candidates by inducing the degree
two permutation characters of the 32.2.S4 type groups to 2.M12.
gap> fus:= PossibleClassFusions( s, tbl );;
gap> deg2:= PermChars( s, 2 );
[ Character( CharacterTable( "3^2.2.S4" ), [ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0
] ) ]
gap> pi:= Set( List( fus, map -> Induced( s, tbl, deg2, map )[1] ) );;
gap> pi = SortedList( Concatenation( faith[12], faith[14] ) );
true
gap> PermCharInfo( tbl, pi ).ATLAS;
[ "1a+11a+12a+44ab+45a+54a+55ac+99a+110ab+120ab",
"1a+11b+12a+44ab+45a+54a+55ab+99a+110ab+120ab" ]
gap> CompareWithDatabase( "2.M12", faith );
gap> CompareWithCandidatesByMaxes( "2.M12", faith );
3.2 G = 2.M12.2
The group 2.M12.2 that is printed in the ATLAS has three faithful
multiplicity-free permutation actions,
with point stabilizers of the types M11 and L2(11).2 (twice),
respectively.
gap> tbl2:= CharacterTable( "2.M12.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;
1: subgroup $M_{11}$, degree 48 (1 cand.)
2: subgroup $L_2(11).2$, degree 288 (2 cand.)
The two classes of subgroups of the type M11 in 2.M12 are fused in
2.M12.2, so we get one class of these subgroups.
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, tbl2, faith[1], "all" );
G = 2.M12.2: point stabilizer M11, ranks [ 5 ]
[ "1a^{\\pm}+11ab+12a^{\\pm}" ]
The outer involutions in the maximal subgroups of the type L2(11).2
in M12.2 lift to involutions in 2.M12.2;
moreover, those subgroups of the type L2(11).2 that are novelties
(so the intersection with M12 lies in M11 subgroups)
contain 2B elements which lift to involutions in 2.M12.2,
so the L2(11) subgroup lifts to a group of the type 2 ×L2(11),
and Lemma 2.3 yields two classes of subgroups.
The permutation characters are different, for example because
each each of the two candidates contains elements in one of the
two preimages of the class 2B.
(The function CheckConditionsForLemma3 fails here,
because of the two classes of maximal subgroups L2(11).2 in M12.2.
One of them contains 2A elements, the other contains 2B elements.
Only the latter type of subgroups, whose intersection with M12 is not
maximal in M12, lifts to subgroups of 2.M12.2 that contain
L2(11).2 subgroups.)
gap> s:= CharacterTable( "L2(11).2" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M12.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[2], "all" );
G = 2.M12.2: point stabilizer L2(11).2, ranks [ 7, 7 ]
[ "1a^++11ab+12a^{\\pm}+55a^++66a^++120b^-",
"1a^++11ab+12a^{\\pm}+55a^++66a^++120b^+" ]
gap> CompareWithDatabase( "2.M12.2", faith );
The group (2.M12.2)∗ of the isoclinism type that is not printed
in the ATLAS has one faithful multiplicity-free permutation action,
with point stabilizer of the type M11;
as this subgroup lies inside 2.M12, its existence is clear,
and the permutation character in both groups of the type 2.M12.2
is the same.
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;
1: subgroup $M_{11}$, degree 48 (1 cand.)
gap> CompareWithDatabase( "Isoclinic(2.M12.2)", faith );
Note that in (2.M12.2)∗,
the subgroup of the type (2 ×L2(11)).2 is a nonsplit extension,
so the unique index 2 subgroup in this group contains the centre of
2.M12.2, in particular there is no subgroup of the type L2(11).2.
gap> s:= CharacterTable( "L2(11).2" );;
gap> PossibleClassFusions( s, tbl2 );
[ ]
3.3 G = 2.M22
The group 2.M22 has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 24:A5, A7 (twice),
and 23:L3(2), by Lemma 2.1.
gap> tbl:= CharacterTable( "2.M22" );;
gap> faith:= FaithfulCandidates( tbl, "M22" );;
3: subgroup $2^4:A_5 \leq 2^4:A_6$, degree 924 (1 cand.)
4: subgroup $A_7$, degree 352 (1 cand.)
5: subgroup $A_7$, degree 352 (1 cand.)
7: subgroup $2^3:L_3(2)$, degree 660 (1 cand.)
Note that one class of subgroups of the type 24:A5 in the maximal subgroup
of the type 24:A6 as well as the A7 and 23:L3(2) subgroups
lift to direct products in 2.M22.
A proof for 24:A5 using explicit computations with the group can be found
in Subsection 4.1.
gap> Maxes( tbl );
[ "2.L3(4)", "2.M22M2", "2xA7", "2xA7", "2.M22M5", "2x2^3:L3(2)",
"(2xA6).2_3", "2xL2(11)" ]
gap> s:= CharacterTable( "P1/G1/L1/V1/ext2" );;
gap> VerifyCandidates( s, tbl, 0, faith[3], "all" );
G = 2.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 8 ]
[ "1a+21a+55a+126ab+154a+210b+231a" ]
gap> faith[4] = faith[5];
true
gap> VerifyCandidates( CharacterTable( "A7" ), tbl, 0, faith[4], "all" );
G = 2.M22: point stabilizer A7, ranks [ 5 ]
[ "1a+21a+56a+120a+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
G = 2.M22: point stabilizer 2^3:sl(3,2), ranks [ 7 ]
[ "1a+21a+55a+99a+120a+154a+210b" ]
gap> CompareWithDatabase( "2.M22", faith );
gap> CompareWithCandidatesByMaxes( "2.M22", faith );
3.4 G = 2.M22.2
The group 2.M22.2 that is printed in the ATLAS has eight faithful
multiplicity-free permutation actions,
with point stabilizers of the types 24:S5 (twice), A7,
23:L3(2) ×2 (twice), 23:L3(2), and L2(11).2 (twice).
gap> tbl2:= CharacterTable( "2.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 924 (2 cand.)
7: subgroup $A_7$, degree 704 (1 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 660 (2 cand.)
12: subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
16: subgroup $L_2(11).2$, degree 1344 (2 cand.)
The character table of the 24:S5 type subgroup is contained in the GAP
Character Table Library,
with identifier w(d5) (cf. Subsection 4.2).
gap> s:= CharacterTable( "w(d5)" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M22.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 2.M22.2: point stabilizer w(d5), ranks [ 7, 7 ]
[ "1a^++21a^++55a^++126ab+154a^++210b^-+231a^-",
"1a^++21a^++55a^++126ab+154a^++210b^++231a^-" ]
The two classes of the type A7 subgroups in 2.M22 are fused
in 2.M22.2.
gap> VerifyCandidates( CharacterTable( "A7" ), tbl, tbl2, faith[7], "all" );
G = 2.M22.2: point stabilizer A7, ranks [ 10 ]
[ "1a^{\\pm}+21a^{\\pm}+56a^{\\pm}+120a^{\\pm}+154a^{\\pm}" ]
The preimages of the 23:L3(2) ×2 type subgroups of M22.2
in 2.M22.2 are direct products, by the discussion of 2.M22
and Lemma 2.3 (i).
So Lemma 2.3 (iii) yields two classes,
with different permutation characters.
gap> s:= CharacterTable( "2x2^3:L3(2)" );;
gap> s0:= CharacterTable( "2^3:sl(3,2)" );;
gap> s0fuss:= PossibleClassFusions( s0, s );;
gap> StoreFusion( s0, s0fuss[1], s );
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
2.M22.2: 2x2^3:L3(2) lifts to a direct product,
proved by squares in [ 1, 5, 14, 16 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = 2.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 7, 7 ]
[ "1a^++21a^++55a^++99a^++120a^-+154a^++210b^-",
"1a^++21a^++55a^++99a^++120a^++154a^++210b^+" ]
There is one class of subgroups of the type 23:L3(2) in 2.M22.
One of the two candidates of degree 1 320 is excluded because it does not
arise from a possible class fusion.
gap> s:= CharacterTable( "M22M6" );;
gap> fus:= PossibleClassFusions( s, tbl );;
gap> pi1320:= Set( List( fus, x -> Induced( s, tbl2,
> [ TrivialCharacter( s ) ], x )[1] ) );;
gap> IsSubset( faith[12], pi1320 );
true
gap> faith[12]:= pi1320;;
gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
G = 2.M22.2: point stabilizer 2^3:sl(3,2), ranks [ 14 ]
[ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+99a^{\\pm}+120a^{\\pm}+154a^{\\pm}+210b^{\\\
pm}" ]
The preimages of the L2(11).2 type subgroups of M22.2 in 2.M22.2
are direct products by Lemma 2.3 (i),
so Lemma 2.3 (iii) yields two classes,
with different permutation characters.
gap> s:= CharacterTable( "L2(11).2" );;
gap> s0:= CharacterTable( "L2(11)" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.M22.2: L2(11).2 lifts to a direct product,
proved by squares in [ 1, 4, 10, 13 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 2.M22.2: point stabilizer L2(11).2, ranks [ 10, 10 ]
[ "1a^++21a^-+55a^++56a^{\\pm}+120a^-+154a^++210a^-+231a^-+440a^+",
"1a^++21a^-+55a^++56a^{\\pm}+120a^++154a^++210a^-+231a^-+440a^-" ]
gap> CompareWithDatabase( "2.M22.2", faith );
The group (2.M22.2)∗ of the isoclinism type that is not printed
in the ATLAS has two faithful multiplicity-free permutation actions,
with point stabilizers of the types A7 and 23:L3(2).
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
7: subgroup $A_7$, degree 704 (1 cand.)
12: subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
gap> faith[12]:= Filtered( faith[12], chi -> chi in pi1320 );;
gap> CompareWithDatabase( "Isoclinic(2.M22.2)", faith );
The two classes of subgroups lie inside 2.M22,
so their existence has been discussed already above.
3.5 G = 3.M22
The group 3.M22 has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 24:A5, 24:S5, 23:L3(2),
and L2(11).
gap> tbl:= CharacterTable( "3.M22" );;
gap> faith:= FaithfulCandidates( tbl, "M22" );;
3: subgroup $2^4:A_5 \leq 2^4:A_6$, degree 1386 (1 cand.)
6: subgroup $2^4:S_5$, degree 693 (1 cand.)
7: subgroup $2^3:L_3(2)$, degree 990 (1 cand.)
9: subgroup $L_2(11)$, degree 2016 (1 cand.)
The existence of one class of each of these types follows from
Lemma 2.1.
gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[3], "all" );
G = 3.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 13 ]
[ "1a+21abc+55a+105abcd+154a+231abc" ]
gap> VerifyCandidates( CharacterTable( "M22M5" ), tbl, 0, faith[6], "all" );
G = 3.M22: point stabilizer 2^4:s5, ranks [ 10 ]
[ "1a+21abc+55a+105abcd+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
G = 3.M22: point stabilizer 2^3:sl(3,2), ranks [ 13 ]
[ "1a+21abc+55a+99abc+105abcd+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M8" ), tbl, 0, faith[9], "all" );
G = 3.M22: point stabilizer L2(11), ranks [ 16 ]
[ "1a+21abc+55a+105abcd+154a+210abc+231abc" ]
gap> CompareWithDatabase( "3.M22", faith );
gap> CompareWithCandidatesByMaxes( "3.M22", faith );
3.6 G = 3.M22.2
The group 3.M22.2 has five faithful multiplicity-free permutation
actions, with point stabilizers of the types 24:S5, 25:S5,
24:(A5 ×2), 23:L3(2) ×2, and L2(11).2.
gap> tbl2:= CharacterTable( "3.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 1386 (1 cand.)
8: subgroup $2^5:S_5$, degree 693 (1 cand.)
10: subgroup $2^4:(A_5 \times 2) \leq 2^5:S_5$, degree 1386 (1 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 990 (1 cand.)
16: subgroup $L_2(11).2$, degree 2016 (1 cand.)
Subgroups of these types exist by Lemma 2.2.
The verification is straightforward in all cases
except that of 24:(A5 ×2).
gap> VerifyCandidates( CharacterTable( "w(d5)" ), tbl, tbl2, faith[6], "all" );
G = 3.M22.2: point stabilizer w(d5), ranks [ 9 ]
[ "1a^++21a^+bc+55a^++105adbc+154a^++231a^-bc" ]
gap> VerifyCandidates( CharacterTable( "M22.2M4" ), tbl, tbl2, faith[8], "all" );
G = 3.M22.2: point stabilizer M22.2M4, ranks [ 7 ]
[ "1a^++21a^+bc+55a^++105adbc+154a^+" ]
gap> VerifyCandidates( CharacterTable( "2x2^3:L3(2)" ), tbl, tbl2, faith[11], "all" );
G = 3.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 9 ]
[ "1a^++21a^+bc+55a^++99a^+bc+105adbc+154a^+" ]
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 3.M22.2: point stabilizer L2(11).2, ranks [ 11 ]
[ "1a^++21a^-bc+55a^++105adbc+154a^++210a^-bc+231a^-bc" ]
In the remaining case, we note that the 24:(A5 ×2) type subgroup
has index 2 in the maximal subgroup of the type 25:S5,
whose character table is available via the identifier M22.2M4.
It is sufficient to show that exactly one of the three index 2
subgroups in this group induces a multiplicity-free permutation character
of 3.M22.2,
and this can be done by inducing the degree 2 permutation characters
of 25:S5 to 3.M22.2.
gap> s:= CharacterTable( "M22.2M4" );;
gap> lin:= LinearCharacters( s );
[ Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1,
-1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 ] ) ]
gap> perms:= List( lin{ [ 2 .. 4 ] }, chi -> chi + lin[1] );;
gap> sfustbl2:= PossibleClassFusions( s, tbl2 );;
gap> Length( sfustbl2 );
2
gap> ind1:= Induced( s, tbl2, perms, sfustbl2[1] );;
gap> ind2:= Induced( s, tbl2, perms, sfustbl2[2] );;
gap> PermCharInfo( tbl2, ind1 ).ATLAS;
[ "1ab+21ab+42aa+55ab+154ab+210ccdd", "1a+21ab+42a+55a+154a+210bcd+462a",
"1a+21aa+42a+55a+154a+210acd+462a" ]
gap> PermCharInfo( tbl2, ind2 ).ATLAS;
[ "1a+21aa+42a+55a+154a+210acd+462a", "1a+21ab+42a+55a+154a+210bcd+462a",
"1ab+21ab+42aa+55ab+154ab+210ccdd" ]
gap> ind1[2] = ind2[2];
true
gap> [ ind1[2] ] = faith[10];
true
gap> CompareWithDatabase( "3.M22.2", faith );
3.7 G = 4.M22 and G = 12.M22
The group 4.M22 and hence also the group 12.M22 has no
faithful multiplicity-free permutation action.
gap> tbl:= CharacterTable( "4.M22" );;
gap> faith:= FaithfulCandidates( tbl, "2.M22" );;
gap> CompareWithDatabase( "4.M22", faith );
gap> CompareWithCandidatesByMaxes( "4.M22", faith );
3.8 G = 4.M22.2 and G = 12.M22.2
The two isoclinism types of groups of the type 4.M22.2 and hence also all
groups of the type 12.M22.2 have no faithful multiplicity-free
permutation actions.
gap> tbl2:= CharacterTable( "4.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "4.M22.2", faith );
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "Isoclinic(4.M22.2)", faith );
3.9 G = 6.M22
The group 6.M22 has two faithful multiplicity-free permutation actions,
with point stabilizers of the types 24:A5 and 23:L3(2).
gap> tbl:= CharacterTable( "6.M22" );;
gap> faith:= FaithfulCandidates( tbl, "3.M22" );;
1: subgroup $2^4:A_5 \rightarrow (M_{22},3)$, degree 2772 (1 cand.)
3: subgroup $2^3:L_3(2) \rightarrow (M_{22},7)$, degree 1980 (1 cand.)
The existence of one class of each of these subgroups follows from the
treatment of 2.M22 and 3.M22.
gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[1], "all" );
G = 6.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 22 ]
[ "1a+21abc+55a+105abcd+126abcdef+154a+210bef+231abc" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[3], "all" );
G = 6.M22: point stabilizer 2^3:sl(3,2), ranks [ 17 ]
[ "1a+21abc+55a+99abc+105abcd+120a+154a+210b+330de" ]
gap> CompareWithDatabase( "6.M22", faith );
gap> CompareWithCandidatesByMaxes( "6.M22", faith );
3.10 G = 6.M22.2
The group 6.M22.2 that is printed in the ATLAS has six faithful
multiplicity-free permutation actions,
with point stabilizers of the types 24:S5 (twice),
23:L3(2) ×2 (twice), and L2(11).2 (twice).
gap> tbl2:= CharacterTable( "6.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 2772 (2 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 1980 (2 cand.)
16: subgroup $L_2(11).2$, degree 4032 (2 cand.)
We know that 2.M22.2 contains two classes of subgroups isomorphic with
each of the required point stabilizers, so we apply Lemma 2.2.
gap> s:= CharacterTable( "w(d5)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 6.M22.2: point stabilizer w(d5), ranks [ 14, 14 ]
[ "1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^-ef+231a^-bc",
"1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^+ef+231a^-bc" ]
(Since 6.M22 contains subgroups of the type 23:L3(2) ×2
in which we are not interested,
we must use "extending" as the last argument of VerifyCandidates
for this case.)
gap> s:= CharacterTable( "2x2^3:L3(2)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = 6.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 12, 12 ]
[ "1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^-+154a^++210b^-+330de",
"1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^++154a^++210b^++330de" ]
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 6.M22.2: point stabilizer L2(11).2, ranks [ 20, 20 ]
[ "1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^-bc+154a^++210a^-cdgjhi+2\
31a^-bc+440a^+",
"1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^+bc+154a^++210a^-cdgjhi+2\
31a^-bc+440a^-" ]
gap> CompareWithDatabase( "6.M22.2", faith );
The group (6.M22.2)∗ of the isoclinism type that is not printed
in the ATLAS has no faithful multiplicity-free permutation action.
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "Isoclinic(6.M22.2)", faith );
3.11 G = 2.J2
The group 2.J2 has one faithful multiplicity-free permutation action,
with point stabilizer of the type U3(3), by Lemma 2.1.
gap> tbl:= CharacterTable( "2.J2" );;
gap> faith:= FaithfulCandidates( tbl, "J2" );;
1: subgroup $U_3(3)$, degree 200 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U3(3)" ), tbl, 0, faith[1], "all" );
G = 2.J2: point stabilizer U3(3), ranks [ 5 ]
[ "1a+36a+50ab+63a" ]
gap> CompareWithDatabase( "2.J2", faith );
gap> CompareWithCandidatesByMaxes( "2.J2", faith );
3.12 G = 2.J2.2
The group 2.J2.2 that is printed in the ATLAS has no faithful
multiplicity-free permutation action.
gap> tbl2:= CharacterTable( "2.J2.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;
gap> CompareWithDatabase( "2.J2.2", faith );
The group (2.J2.2)∗ of the isoclinism type that is not printed
in the ATLAS has four faithful multiplicity-free permutation actions,
with point stabilizers of the types U3(3).2 (twice) and
3.A6.23 (twice).
gap> facttbl:= CharacterTable( "J2.2" );;
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;
1: subgroup $U_3(3).2$, degree 200 (1 cand.)
5: subgroup $3.A_6.2_3 \leq 3.A_6.2^2$, degree 1120 (1 cand.)
The existence of two classes of each of these subgroups follows from
Lemma 2.3.
(Note that the Schur multiplier of U3(3) is trivial and 6.A6
does not admit an automorphic extension that has a factor group A6.23.)
gap> s0:= CharacterTable( "U3(3)" );;
gap> s:= CharacterTable( "U3(3).2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): U3(3).2 lifts to a direct product,
proved by squares in [ 1, 3, 8, 16 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[1], "all" );
G = Isoclinic(2.J2.2): point stabilizer U3(3).2, ranks [ 4 ]
[ "1a^++36a^++50ab+63a^+" ]
gap> s0:= CharacterTable( "3.A6" );;
gap> s:= CharacterTable( "3.A6.2_3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): 3.A6.2_3 lifts to a direct product,
proved by squares in [ 3, 10, 16, 25 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[5], "all" );
G = Isoclinic(2.J2.2): point stabilizer 3.A6.2_3, ranks [ 12 ]
[ "1a^++14c^{\\pm}+21ab+50ab+63a^{\\pm}+90a^++126a^++175a^-+216a^{\\pm}" ]
gap> faith[1]:= faith[1]{ [ 1, 1 ] };;
gap> faith[5]:= faith[5]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "Isoclinic(2.J2.2)", faith );
3.13 G = 2.HS
The group 2.HS has five faithful multiplicity-free permutation actions,
with point stabilizers of the types U3(5) (twice), A8,
and M11 (twice).
gap> tbl:= CharacterTable( "2.HS" );;
gap> faith:= FaithfulCandidates( tbl, "HS" );;
3: subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
5: subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
8: subgroup $A_8 \leq A_8.2$, degree 4400 (1 cand.)
10: subgroup $M_{11}$, degree 11200 (1 cand.)
11: subgroup $M_{11}$, degree 11200 (1 cand.)
Lemma 2.1 applies in all cases; note that 2.HS does not admit
an embedding of 2.A8.
gap> VerifyCandidates( CharacterTable( "U3(5)" ), tbl, 0,
> Concatenation( faith[3], faith[5] ), "all" );
G = 2.HS: point stabilizer U3(5), ranks [ 6, 6 ]
[ "1a+22a+154c+175a+176ab", "1a+22a+154b+175a+176ab" ]
gap> PossibleClassFusions( CharacterTable( "2.A8" ), tbl );
[ ]
gap> VerifyCandidates( CharacterTable( "A8" ), tbl, 0, faith[8], "all" );
G = 2.HS: point stabilizer A8, ranks [ 13 ]
[ "1a+22a+77a+154abc+175a+176ab+693a+770a+924ab" ]
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
> Concatenation( faith[10], faith[11] ), "all" );
G = 2.HS: point stabilizer M11, ranks [ 16, 16 ]
[ "1a+22a+56a+77a+154c+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a",
"1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a" ]
gap> CompareWithDatabase( "2.HS", faith );
gap> CompareWithCandidatesByMaxes( "2.HS", faith );
3.14 G = 2.HS.2
The group 2.HS.2 that is printed in the ATLAS has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types A8 ×2 (twice)
and A8.2 (twice).
gap> tbl2:= CharacterTable("2.HS.2");;
gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;
10: subgroup $A_8 \times 2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
11: subgroup $A_8.2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
The existence of two classes of subgroups for each candidate follows from
Lemma 2.3.
(Since there are A8 ×2 type subgroups inside 2.HS in which we are
not interested,
we must use "extending" as the last argument of VerifyCandidates.)
gap> facttbl:= CharacterTable( "HS.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> s0:= CharacterTable( "A8");;
gap> s:= s0 * CharacterTable( "Cyclic", 2 );
CharacterTable( "A8xC2" )
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.HS.2: A8xC2 lifts to a direct product,
proved by squares in [ 1, 6, 13, 20, 30 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[10], "extending" );
G = 2.HS.2: point stabilizer A8xC2, ranks [ 10 ]
[ "1a^++22a^++77a^++154a^+bc+175a^++176ab+693a^++770a^++924ab" ]
gap> s:= CharacterTable( "A8.2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
2.HS.2: A8.2 lifts to a direct product,
proved by squares in [ 1, 6, 13 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "all" );
G = 2.HS.2: point stabilizer A8.2, ranks [ 10 ]
[ "1a^++22a^-+77a^++154a^+bc+175a^++176ab+693a^++770a^-+924ab" ]
gap> faith[10]:= faith[10]{ [ 1, 1 ] };;
gap> faith[11]:= faith[11]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.HS.2", faith );
The group (2.HS.2)∗ of the isoclinism type that is not printed
in the ATLAS has no faithful multiplicity-free permutation action.
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;
gap> CompareWithDatabase( "Isoclinic(2.HS.2)", faith );
3.15 G = 3.J3
The group 3.J3 has no faithful multiplicity-free permutation action.
gap> tbl:= CharacterTable( "3.J3" );;
gap> faith:= FaithfulCandidates( tbl, "J3" );;
gap> CompareWithDatabase( "3.J3", faith );
3.16 G = 3.J3.2
The group 3.J3.2 has no faithful multiplicity-free permutation action.
gap> tbl2:= CharacterTable( "3.J3.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J3.2" );;
gap> CompareWithDatabase( "3.J3.2", faith );
3.17 G = 3.McL
The group 3.McL has one faithful multiplicity-free permutation action,
with point stabilizer of the type 2.A8, by Lemma 2.1.
gap> tbl:= CharacterTable( "3.McL" );;
gap> faith:= FaithfulCandidates( tbl, "McL" );;
6: subgroup $2.A_8$, degree 66825 (1 cand.)
gap> VerifyCandidates( CharacterTable( "2.A8" ), tbl, 0, faith[6], "all" );
G = 3.McL: point stabilizer 2.A8, ranks [ 14 ]
[ "1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a" ]
gap> CompareWithDatabase( "3.McL", faith );
gap> CompareWithCandidatesByMaxes( "3.McL", faith );
3.18 G = 3.McL.2
The group 3.McL.2 has one faithful multiplicity-free permutation action,
with point stabilizer of the type (2.A8.2)∗,
by Lemma 2.2.
gap> tbl2:= CharacterTable( "3.McL.2" );;
gap> faith:= FaithfulCandidates( tbl2, "McL.2" );;
9: subgroup $2.S_8$, degree 66825 (1 cand.)
gap> s:= CharacterTable( "Isoclinic(2.A8.2)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[9], "all" );
G = 3.McL.2: point stabilizer Isoclinic(2.A8.2), ranks [ 10 ]
[ "1a^++252a^++1750a^++2772ab+5103a^+bc+5544a^++6336ab+8064ab+9625a^+" ]
gap> CompareWithDatabase( "3.McL.2", faith );
3.19 G = 2.Ru
The group 2.Ru has one faithful multiplicity-free permutation action,
with point stabilizer of the type 2F4(2)′,
by Lemma 2.1.
gap> tbl:= CharacterTable( "2.Ru" );;
gap> faith:= FaithfulCandidates( tbl, "Ru" );;
2: subgroup ${^2F_4(2)^{\prime}} \leq {^2F_4(2)^{\prime}}.2$, degree 16240 (
1 cand.)
gap> VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[2], "all" );
G = 2.Ru: point stabilizer 2F4(2)', ranks [ 9 ]
[ "1a+28ab+406a+783a+3276a+3654a+4032ab" ]
gap> CompareWithDatabase( "2.Ru", faith );
3.20 G = 2.Suz
The group 2.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U5(2), by Lemma 2.1.
gap> tbl:= CharacterTable( "2.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "Suz" );;
4: subgroup $U_5(2)$, degree 65520 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
G = 2.Suz: point stabilizer U5(2), ranks [ 10 ]
[ "1a+143a+364abc+5940a+12012a+14300a+16016ab" ]
gap> CompareWithDatabase( "2.Suz", faith );
3.21 G = 2.Suz.2
The group 2.Suz.2 that is printed in the ATLAS has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types U5(2).2 (twice)
and 35:(M11 ×2) (twice), respectively.
gap> tbl2:= CharacterTable( "2.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
8: subgroup $U_5(2).2$, degree 65520 (1 cand.)
12: subgroup $3^5:(M_{11} \times 2)$, degree 465920 (1 cand.)
We verify the conditions of Lemma 2.3.
gap> s0:= CharacterTable( "U5(2)" );;
gap> s:= CharacterTable( "U5(2).2" );;
gap> facttbl:= CharacterTable( "Suz.2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Suz.2: U5(2).2 lifts to a direct product,
proved by squares in [ 1, 8, 13, 19, 31, 44 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
G = 2.Suz.2: point stabilizer U5(2).2, ranks [ 8 ]
[ "1a^++143a^-+364a^+bc+5940a^++12012a^-+14300a^-+16016ab" ]
gap> s0:= CharacterTable( "SuzM5" );
CharacterTable( "3^5:M11" )
gap> s:= CharacterTable( "Suz.2M6" );
CharacterTable( "3^5:(M11x2)" )
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Suz.2: 3^5:(M11x2) lifts to a direct product,
proved by squares in [ 1, 4, 8, 10, 19, 22, 26, 39 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
G = 2.Suz.2: point stabilizer 3^5:(M11x2), ranks [ 14 ]
[ "1a^++364a^{\\pm}bc+5940a^++12012a^-+14300a^-+15015ab+15795a^++16016ab+54054\
a^++100100a^-b^{\\pm}" ]
gap> faith[8]:= faith[8]{ [ 1, 1 ] };;
gap> faith[12]:= faith[12]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.Suz.2", faith );
The group (2.Suz.2)∗ of the isoclinism type that is not printed
in the ATLAS has no faithful multiplicity-free permutation action.
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
gap> CompareWithDatabase( "Isoclinic(2.Suz.2)", faith );
3.22 G = 3.Suz
The group 3.Suz has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G2(4), U5(2),
21+6−.U4(2), and 24+6:3A6, respectively,
by Lemma 2.1.
gap> tbl:= CharacterTable( "3.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "Suz" );;
1: subgroup $G_2(4)$, degree 5346 (1 cand.)
4: subgroup $U_5(2)$, degree 98280 (1 cand.)
5: subgroup $2^{1+6}_-.U_4(2)$, degree 405405 (1 cand.)
6: subgroup $2^{4+6}:3A_6$, degree 1216215 (1 cand.)
gap> Maxes( tbl );
[ "3xG2(4)", "3^2.U4(3).2_3'", "3xU5(2)", "3x2^(1+6)_-.U4(2)", "3^6.M11",
"3xJ2.2", "3x2^(4+6).3A6", "(A4x3.L3(4)).2", "3x2^(2+8):(A5xS3)",
"3xM12.2", "3.3^(2+4):2(A4x2^2).2", "(3.A6xA5):2", "(3^(1+2):4xA6).2",
"3xL3(3).2", "3xL3(3).2", "3xL2(25)", "3.A7" ]
gap> VerifyCandidates( CharacterTable( "G2(4)" ), tbl, 0, faith[1], "all" );
G = 3.Suz: point stabilizer G2(4), ranks [ 7 ]
[ "1a+66ab+780a+1001a+1716ab" ]
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
G = 3.Suz: point stabilizer U5(2), ranks [ 14 ]
[ "1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab" ]
gap> VerifyCandidates( CharacterTable( "SuzM4" ), tbl, 0, faith[5], "all" );
G = 3.Suz: point stabilizer 2^1+6.u4q2, ranks [ 23 ]
[ "1a+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42\
900ab+64350cd+66560a" ]
gap> VerifyCandidates( CharacterTable( "SuzM7" ), tbl, 0, faith[6], "all" );
G = 3.Suz: point stabilizer 2^4+6:3a6, ranks [ 27 ]
[ "1a+364a+780a+1001a+1365ab+4290ab+5940a+12012a+14300a+15795a+25025a+27027ab+\
42900ab+66560a+75075a+85800ab+88452a+100100a+104247ab+139776ab" ]
gap> CompareWithDatabase( "3.Suz", faith );
3.23 G = 3.Suz.2
The group 3.Suz.2 has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G2(4).2, U5(2).2,
21+6−.U4(2).2, and 24+6:3S6, respectively.
We know from the treatment of 3.Suz that we can apply
Lemma 2.2.
gap> tbl2:= CharacterTable( "3.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
1: subgroup $G_2(4).2$, degree 5346 (1 cand.)
8: subgroup $U_5(2).2$, degree 98280 (1 cand.)
10: subgroup $2^{1+6}_-.U_4(2).2$, degree 405405 (1 cand.)
13: subgroup $2^{4+6}:3S_6$, degree 1216215 (1 cand.)
gap> Maxes( CharacterTable( "Suz.2" ) );
[ "Suz", "G2(4).2", "3_2.U4(3).(2^2)_{133}", "U5(2).2", "2^(1+6)_-.U4(2).2",
"3^5:(M11x2)", "J2.2x2", "2^(4+6):3S6", "(A4xL3(4):2_3):2",
"2^(2+8):(S5xS3)", "M12.2x2", "3^(2+4):2(S4xD8)", "(A6:2_2xA5).2",
"(3^2:8xA6).2", "L2(25).2_2", "A7.2" ]
gap> VerifyCandidates( CharacterTable( "G2(4).2" ), tbl, tbl2, faith[1], "all" );
G = 3.Suz.2: point stabilizer G2(4).2, ranks [ 5 ]
[ "1a^++66ab+780a^++1001a^++1716ab" ]
gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
G = 3.Suz.2: point stabilizer U5(2).2, ranks [ 10 ]
[ "1a^++78ab+143a^-+364a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+27027ab" ]
gap> VerifyCandidates( CharacterTable( "Suz.2M5" ), tbl, tbl2, faith[10], "all" );
G = 3.Suz.2: point stabilizer 2^(1+6)_-.U4(2).2, ranks [ 16 ]
[ "1a^++66ab+143a^-+429ab+780a^++1716ab+3432a^++5940a^++6720ab+14300a^-+18954a\
^-bc+25025a^++42900ab+64350cd+66560a^+" ]
gap> VerifyCandidates( CharacterTable( "Suz.2M8" ), tbl, tbl2, faith[13], "all" );
G = 3.Suz.2: point stabilizer 2^(4+6):3S6, ranks [ 20 ]
[ "1a^++364a^++780a^++1001a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+15795a^+\
+25025a^++27027ab+42900ab+66560a^++75075a^++85800ab+88452a^++100100a^++104247a\
b+139776ab" ]
gap> CompareWithDatabase( "3.Suz.2", faith );
3.24 G = 6.Suz
The group 6.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U5(2), by Lemma 2.1.
gap> tbl:= CharacterTable( "6.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "2.Suz" );;
1: subgroup $U_5(2) \rightarrow (Suz,4)$, degree 196560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[1], "all" );
G = 6.Suz: point stabilizer U5(2), ranks [ 26 ]
[ "1a+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+160\
16ab+27027ab+27456ab" ]
gap> CompareWithDatabase( "6.Suz", faith );
3.25 G = 6.Suz.2
The group 6.Suz.2 that is printed in the ATLAS has two faithful
multiplicity-free permutation actions,
with point stabilizers of the type U5(2).2 (twice).
We know from the treatment of 6.Suz that we can apply
Lemma 2.2.
gap> tbl2:= CharacterTable( "6.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
8: subgroup $U_5(2).2$, degree 196560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
G = 6.Suz.2: point stabilizer U5(2).2, ranks [ 16 ]
[ "1a^++12ab+78ab+143a^-+364a^+bc+924ab+1365ab+4290ab+4368ab+5940a^++12012a^-+\
14300a^-+16016ab+27027ab+27456ab" ]
gap> faith[8]:= faith[8]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "6.Suz.2", faith );
It follows from the treatment of 2.Suz.2 that the group (6.Suz.2)∗
of the isoclinism type that is not printed in the ATLAS does not have a
faithful multiplicity-free permutation action.
3.26 G = 3.ON
The group 3.ON has four faithful multiplicity-free permutation actions,
with point stabilizers of the types L3(7).2 (twice) and L3(7) (twice).
(The Schur multiplier of L3(7).2 is trivial, so the L3(7) type
subgroups lift to direct products with the centre of 3.ON, that is,
we can apply Lemma 2.1.)
gap> tbl:= CharacterTable( "3.ON" );;
gap> faith:= FaithfulCandidates( tbl, "ON" );;
1: subgroup $L_3(7).2$, degree 368280 (1 cand.)
2: subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
3: subgroup $L_3(7).2$, degree 368280 (1 cand.)
4: subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "L3(7).2" ), tbl, 0,
> Concatenation( faith[1], faith[3] ), "all" );
G = 3.ON: point stabilizer L3(7).2, ranks [ 11, 11 ]
[ "1a+495ab+10944a+26752a+32395b+52668a+58653bc+63612ab",
"1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab" ]
gap> VerifyCandidates( CharacterTable( "L3(7)" ), tbl, 0,
> Concatenation( faith[2], faith[4] ), "all" );
G = 3.ON: point stabilizer L3(7), ranks [ 15, 15 ]
[ "1a+495ab+10944a+26752a+32395b+37696a+52668a+58653bc+63612ab+85064a+122760ab\
",
"1a+495cd+10944a+26752a+32395a+37696a+52668a+58653bc+63612ab+85064a+122760ab\
" ]
gap> CompareWithDatabase( "3.ON", faith );
3.27 G = 3.ON.2
The group 3.ON.2 has no faithful multiplicity-free permutation action.
gap> tbl2:= CharacterTable( "3.ON.2" );;
gap> faith:= FaithfulCandidates( tbl2, "ON.2" );;
gap> CompareWithDatabase( "3.ON.2", faith );
3.28 G = 2.Fi22
The group 2.Fi22 has seven faithful multiplicity-free permutation
actions, with point stabilizers of the types O7(3) (twice), O8+(2):S3
(twice), O8+(2):3, and O8+(2):2 (twice).
gap> tbl:= CharacterTable( "2.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "Fi22" );;
2: subgroup $O_7(3)$, degree 28160 (2 cand.)
3: subgroup $O_7(3)$, degree 28160 (2 cand.)
4: subgroup $O_8^+(2).3.2$, degree 123552 (2 cand.)
5: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 247104 (1 cand.)
6: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)
The two classes of maximal subgroups of the type O7(3) in Fi22 induce
the same permutation character and lift to two classes of the type
2 ×O7(3) in 2.Fi22.
We get the same two candidates for these two classes.
One of them belongs to the first class of O7(3) subgroups in 2.Fi22,
the other candidate belongs to the second class;
this can be seen from the fact that the outer automorphism of Fi22
swaps the two classes of O7(3) subgroups, and the lift of this automorphism
to 2.Fi22 interchanges the candidates
-this action can be read off from the embedding of 2.Fi22 into any group
of the type 2.Fi22.2.
gap> faith[2] = faith[3];
true
gap> tbl2:= CharacterTable("2.Fi22.2");;
gap> embed:= GetFusionMap( tbl, tbl2 );;
gap> swapped:= Filtered( InverseMap( embed ), IsList );
[ [ 3, 4 ], [ 17, 18 ], [ 25, 26 ], [ 27, 28 ], [ 33, 34 ], [ 36, 37 ],
[ 42, 43 ], [ 51, 52 ], [ 59, 60 ], [ 63, 65 ], [ 64, 66 ], [ 71, 72 ],
[ 73, 75 ], [ 74, 76 ], [ 81, 82 ], [ 85, 87 ], [ 86, 88 ], [ 89, 90 ],
[ 93, 94 ], [ 95, 98 ], [ 96, 97 ], [ 99, 100 ], [ 103, 104 ],
[ 107, 110 ], [ 108, 109 ], [ 113, 114 ] ]
gap> perm:= Product( List( swapped, pair -> ( pair[1], pair[2] ) ) );;
gap> Permuted( faith[2][1], perm ) = faith[2][2];
true
gap> VerifyCandidates( CharacterTable( "O7(3)" ), tbl, 0, faith[2], "all" );
G = 2.Fi22: point stabilizer O7(3), ranks [ 5, 5 ]
[ "1a+352a+429a+13650a+13728b", "1a+352a+429a+13650a+13728a" ]
gap> faith[2]:= [ faith[2][1] ];;
gap> faith[3]:= [ faith[3][2] ];;
All involutions in Fi22 lift to involutions in 2.Fi22,
so the preimages of the maximal subgroups of the type O8+(2).S3
in Fi22 have the type 2 ×O8+(2).S3.
We apply Lemma 2.3, using that the two subgroups of the type
O8+(2).S3 contain involutions outside O8+(2) which lie in the two
nonconjugate preimages of the class 2A of Fi22;
this proves the existence of the two candidates of degree 123 552.
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> facttbl:= CharacterTable( "Fi22" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );
2.Fi22: O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 8, 10, 12, 20, 23, 30, 46, 55, 61, 91 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
G = 2.Fi22: point stabilizer O8+(2).3.2, ranks [ 6, 6 ]
[ "1a+3080a+13650a+13728b+45045a+48048c",
"1a+3080a+13650a+13728a+45045a+48048b" ]
The existence of one class of O8+(2).3 subgroups follows from
Lemma 2.1, and the proof for O8+(2).S3 also establishes
two classes of O8+(2).2 subgroups, with different permutation characters,
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0, faith[5], "all" );
G = 2.Fi22: point stabilizer O8+(2).3, ranks [ 11 ]
[ "1a+1001a+3080a+10725a+13650a+13728ab+45045a+48048bc+50050a" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
G = 2.Fi22: point stabilizer O8+(2).2, ranks [ 11, 11 ]
[ "1a+352a+429a+3080a+13650a+13728b+45045a+48048ac+75075a+123200a",
"1a+352a+429a+3080a+13650a+13728a+45045a+48048ab+75075a+123200a" ]
gap> CompareWithDatabase( "2.Fi22", faith );
3.29 G = 2.Fi22.2
The group 2.Fi22.2 that is printed in the ATLAS has seven faithful
multiplicity-free permutation actions,
with point stabilizers of the types O7(3), O8+(2):S3,
O8+(2):3 ×2 (twice), O8+(2):2, and 2F4(2) (twice).
gap> tbl2:= CharacterTable( "2.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
3: subgroup $O_7(3)$, degree 56320 (1 cand.)
5: subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
10: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
16: subgroup ${^2F_4(2)}$, degree 7185024 (1 cand.)
The third, fifth, and tenth multiplicity-free permutation character of
Fi22.2 are induced from subgroups of the types O7(3), O8+(2).S3,
and O8+(2).2 that lie inside Fi22, and we have discussed above that
these groups lift to direct products in 2.Fi22.
In fact all such subgroups of 2.Fi22.2 lie inside 2.Fi22,
and the two classes of such subgroups in 2.Fi22 are fused in
2.Fi22.2, hence we get only one class of these subgroups.
gap> VerifyCandidates( CharacterTable( "O7(3)" ), tbl, tbl2, faith[3], "all" );
G = 2.Fi22.2: point stabilizer O7(3), ranks [ 9 ]
[ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+13650a^{\\pm}+13728ab" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, tbl2, faith[5], "all" );
G = 2.Fi22.2: point stabilizer O8+(2).3.2, ranks [ 10 ]
[ "1a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a^{\\pm}+48048bc" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, tbl2, faith[10], "all" );
G = 2.Fi22.2: point stabilizer O8+(2).2, ranks [ 20 ]
[ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a\
^{\\pm}+48048a^{\\pm}bc+75075a^{\\pm}+123200a^{\\pm}" ]
The sixth multiplicity-free permutation character of Fi22.2
is induced from a subgroup of the type O8+(2).3 ×2 that does not lie
inside Fi22.
As we have discussed above, the O8+(2).3 type subgroup of Fi22
lifts to a subgroup of the type 2 ×O8+(2).3 in 2.Fi22,
and the outer involutions in the subgroup O8+(2).3 ×2 of Fi22.2
lift to involutions in 2.Fi22.2, so there are two subgroups of the type
O8+(2).3 ×2 not containing the centre of 2.Fi22.2,
which induce the same permutation character.
Since also 2.Fi22 contains subgroups of the type O8+(2).3 ×2,
we must use "extending" as the last argument of VerifyCandidates.
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
G = 2.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 9 ]
[ "1a^++1001a^-+3080a^++10725a^++13650a^++13728ab+45045a^++48048bc+50050a^+" ]
gap> faith[6]:= faith[6]{ [ 1, 1 ] };;
By Lemma 2.3, the subgroup 2F4(2) of Fi22.2 lifts
to 2 ×2F4(2) in 2.Fi22.2;
for that, note that the class 4D of 2F4(2) does not lie inside
2F4(2)′ and the preimages in 2.Fi22.2 of the images in
Fi22.2 square into the subgroup 2F4(2)′ of the direct
product 2 ×2F4(2)′.
Since the group 2 ×2F4(2) contains two subgroups of the type
2F4(2), with normalizer 2 ×2F4(2), there are two classes
of such subgroups, which induce the same permutation character.
gap> facttbl:= CharacterTable( "Fi22.2" );;
gap> s0:= CharacterTable( "2F4(2)'" );;
gap> s:= CharacterTable( "2F4(2)" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Fi22.2: 2F4(2)'.2 lifts to a direct product,
proved by squares in [ 5, 38, 53 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[16], "all" );
G = 2.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 13 ]
[ "1a^++1001a^++1430a^++13650a^++30030a^++133056a^{\\pm}+289575a^-+400400ab+57\
9150a^++675675a^-+1201200a^-+1663200ab" ]
gap> faith[16]:= faith[16]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.Fi22.2", faith );
The group (2.Fi22.2)∗ of the isoclinism type that is not printed
in the ATLAS has seven faithful multiplicity-free permutation actions,
with point stabilizers of the types O7(3), O8+(2):S3 (three times),
and O8+(2):2 (three times).
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
3: subgroup $O_7(3)$, degree 56320 (1 cand.)
5: subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
10: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
11: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
The characters arising from the third, fifth, and tenth multiplicity-free
permutation character of Fi22.2 are induced from subgroups of
2.Fi22, so these actions have been verified above.
The seventh multiplicity-free permutation character of Fi22.2 is induced
from an O8+(2):S3 type subgroup that does not lie inside Fi22.
By Lemma 2.3 (i), this subgroup lifts to a direct
product in (2.Fi22.2)∗;
this yields two actions
(because the O8+(2):S3 type subgroups have index 2 in their normalizer),
which induce the same permutation character.
Note that the involutions in O8+(2):S3 \O8+(2) lie in the
class 2F of Fi22.2, and these elements lift to involutions in
(2.Fi22.2)∗.
Since also 2.Fi22 contains subgroups of the type O8+(2):S3,
we must use "extending" as the last argument of VerifyCandidates.
This argument also proves the existence of two classes of O8+(2):2 type
subgroups that are not contained in 2.Fi22;
they arise from the 11th multiplicity-free permutation character
of Fi22.2.
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
Isoclinic(2.Fi22.2): O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 7, 9, 11, 18, 21, 26, 39, 47, 52, 73 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = Isoclinic(2.Fi22.2): point stabilizer O8+(2).3.2, ranks [ 9 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+45045a^++48048bc+50050a^-" ]
gap> faith[7]:= faith[7]{ [ 1, 1 ] };;
gap> s:= CharacterTable( "O8+(2).2" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = Isoclinic(2.Fi22.2): point stabilizer O8+(2).2, ranks [ 19 ]
[ "1a^++352a^{\\pm}+429a^{\\pm}+1001a^++3080a^++10725a^-+13650a^++13728ab+4504\
5a^++48048a^{\\pm}bc+50050a^-+75075a^{\\pm}+123200a^{\\pm}" ]
gap> faith[11]:= faith[11]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "Isoclinic(2.Fi22.2)", faith );
3.30 G = 3.Fi22
The group 3.Fi22 has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O8+(2):S3, O8+(2):3 (twice),
O8+(2):2, 26:S6(2), and 2F4(2).
gap> tbl:= CharacterTable( "3.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "Fi22" );;
4: subgroup $O_8^+(2).3.2$, degree 185328 (1 cand.)
5: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)
6: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 555984 (1 cand.)
8: subgroup $2^6:S_6(2)$, degree 2084940 (1 cand.)
9: subgroup ${^2F_4(2)^{\prime}}$, degree 10777536 (1 cand.)
The preimages of the maximal subgroups of the type O8+(2).S3 in Fi22
have the type 3 ×O8+(2).S3,
because the Schur multiplier of O8+(2) has order 4 and the only central
extension of S3 by a group of order 3 is 3 ×S3.
Each such preimage contains one subgroup of the type O8+(2).S3
with one subgroup of the type O8+(2).3,
two conjugate O8+(2).3 subgroups which are not contained in O8+(2).S3,
and one class of O8+(2).2 subgroups.
The two classes of O8+(2).3 subgroups contain elements of order 3
outside O8+(2) which lie in nonconjugate preimages of the class 3A
of Fi22, so we get two classes of O8+(2).3 subgroups in 3.Fi22
which induce different permutation characters.
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
G = 3.Fi22: point stabilizer O8+(2).3.2, ranks [ 10 ]
[ "1a+351ab+3080a+13650a+19305ab+42120ab+45045a" ]
gap> s:= CharacterTable( "O8+(2).3" );;
gap> fus:= PossibleClassFusions( s, tbl );;
gap> facttbl:= CharacterTable( "Fi22" );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ],
> ClassPositionsOfDerivedSubgroup( s ) );;
gap> outerfus:= List( fus, map -> map{ outer } );
[ [ 13, 13, 18, 18, 46, 46, 50, 50, 59, 59, 75, 75, 95, 95, 98, 98, 95, 95,
116, 116, 142, 142, 148, 148, 157, 157, 160, 160 ],
[ 14, 15, 18, 18, 47, 48, 51, 52, 59, 59, 76, 77, 96, 97, 99, 100, 96, 97,
116, 116, 143, 144, 149, 150, 158, 159, 161, 162 ],
[ 15, 14, 18, 18, 48, 47, 52, 51, 59, 59, 77, 76, 97, 96, 100, 99, 97, 96,
116, 116, 144, 143, 150, 149, 159, 158, 162, 161 ] ]
gap> preim:= InverseMap( factfus )[5];
[ 13, 14, 15 ]
gap> List( outerfus, x -> List( preim, i -> i in x ) );
[ [ true, false, false ], [ false, true, true ], [ false, true, true ] ]
gap> VerifyCandidates( s, tbl, 0, faith[5], "all" );
G = 3.Fi22: point stabilizer O8+(2).3, ranks [ 11, 17 ]
[ "1a+1001a+3080a+10725a+13650a+27027ab+45045a+50050a+96525ab",
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+19305ab+42120ab+45045a+50050a+540\
54ab" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
G = 3.Fi22: point stabilizer O8+(2).2, ranks [ 17 ]
[ "1a+351ab+429a+3080a+13650a+19305ab+27027ab+42120ab+45045a+48048a+75075a+965\
25ab" ]
Lemma 2.1 applies to the maximal subgroups of the types
26:S6(2) and 2F4(2)′ in Fi22 and their preimages
in 3.Fi22.
gap> VerifyCandidates( CharacterTable( "2^6:s6f2" ), tbl, 0, faith[8], "all" );
G = 3.Fi22: point stabilizer 2^6:s6f2, ranks [ 24 ]
[ "1a+351ab+429a+1430a+3080a+13650a+19305ab+27027ab+30030a+42120ab+45045a+7507\
5a+96525ab+123552ab+205920a+320320a+386100ab" ]
gap> VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[9], "all" );
G = 3.Fi22: point stabilizer 2F4(2)', ranks [ 25 ]
[ "1a+1001a+1430a+13650a+19305ab+27027ab+30030a+51975ab+289575a+386100ab+40040\
0ab+405405ab+579150a+675675a+1201200a+1351350efgh" ]
gap> CompareWithDatabase( "3.Fi22", faith );
3.31 G = 3.Fi22.2
The group 3.Fi22.2 has seven faithful multiplicity-free permutation
actions,
with point stabilizers of the types O8+(2):S3 ×2,
O8+(2):3 ×2, O8+(2):S3 (twice), O8+(2):2 ×2,
27:S6(2), and 2F4(2).
gap> tbl2:= CharacterTable( "3.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
4: subgroup $O_8^+(2).3.2 \times 2$, degree 185328 (1 cand.)
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
1 cand.)
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
2 cand.)
8: subgroup $O_8^+(2).2 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 555984 (
1 cand.)
9: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
14: subgroup $2^7:S_6(2)$, degree 2084940 (1 cand.)
16: subgroup ${^2F_4(2)}$, degree 10777536 (1 cand.)
Let H be a subgroup of the type O8+(2):S3 ×2 in Fi22.2;
it induces the 4th multiplicity-free permutation character of Fi22.2.
The intersection of H with Fi22 is of the type O8+(2):S3;
it lifts to a direct product in 3.Fi22, which contains one subgroup
of the type O8+(2):S3 that is normal in the preimage of H.
By Lemma 2.2, we get one class of subgroups of the type
O8+(2):S3 ×2 in 3.Fi22.2.
The same argument yields one class of each of the types O8+(2):3 ×2
and O8+(2):2 ×2,
which arise from the 6th and 8th multiplicity-free permutation character
of Fi22.2, respectively.
gap> s:= CharacterTable( "O8+(2).S3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[4], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).3.2xC2, ranks [ 7 ]
[ "1a^++351ab+3080a^++13650a^++19305ab+42120ab+45045a^+" ]
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 12 ]
[ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++19305ab+42120ab+45045a^\
++50050a^++54054ab" ]
gap> s:= CharacterTable( "O8+(2).2" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).2xC2, ranks [ 12 ]
[ "1a^++351ab+429a^++3080a^++13650a^++19305ab+27027ab+42120ab+45045a^++48048a^\
++75075a^++96525ab" ]
Let H be a subgroup of the type O8+(2):S3 in Fi22.2 that is not
contained in Fi22; it induces the 7-th multiplicity-free
permutation character of Fi22.2.
The intersection of H with Fi22 is of the type O8+(2):3;
it lifts to a direct product in 3.Fi22, which contains four subgroups
of the type O8+(2):3,
three of them not containing the centre of 3.Fi22.
By Lemma 2.2, we get three subgroups of the type
O8+(2):S3 in 3.Fi22.2, two of which are conjugate;
they induce two different permutation characters, so we get two classes.
(Since there are O8+(2).S3 type subgroups also inside 3.Fi22,
we must use "extending" as the last argument of VerifyCandidates.)
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable("Fi22.2");;
gap> sfustbl2:= PossibleClassFusions( s, tbl2,
> rec( permchar:= faith[7][1] ) );;
gap> ForAll( sfustbl2,
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = 3.Fi22.2: point stabilizer O8+(2).3.2, ranks [ 9, 12 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++27027ab+45045a^++50050a^-+96525ab",
"1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++19305ab+42120ab+45045a^\
++50050a^-+54054ab" ]
The nineth multiplicity-free permutation character of Fi22.2
is induced from a subgroup of the type O8+(2).3 that lies inside Fi22
and is known to lift to s group of the type 3 ×O8+(2).3
in 3.Fi22.
All subgroups of index three in this group either contain the centre of
3.Fi22 or have the type O8+(2).3, and it turns out that the
permutation characters of 3.Fi22.2 induced from these subgroups are
not multiplicity-free.
So the candidate can be excluded.
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, tbl2, faith[9], "all" );
G = 3.Fi22.2: no O8+(2).3
gap> faith[9]:= [];;
Lemma 2.2 guarantees the existence of one class of subgroups
of each of the types 27:S6(2) and 2F4(2).
gap> VerifyCandidates( CharacterTable( "2^7:S6(2)" ), tbl, tbl2, faith[14], "all" );
G = 3.Fi22.2: point stabilizer 2^7:S6(2), ranks [ 17 ]
[ "1a^++351ab+429a^++1430a^++3080a^++13650a^++19305ab+27027ab+30030a^++42120ab\
+45045a^++75075a^++96525ab+123552ab+205920a^++320320a^++386100ab" ]
gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
G = 3.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 17 ]
[ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+289575a^-+38\
6100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350efgh" ]
gap> CompareWithDatabase( "3.Fi22.2", faith );
3.32 G = 6.Fi22
The group 6.Fi22 has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O8+(2):S3 (twice),
O8+(2):3 (twice), and O8+(2):2 (twice).
gap> tbl:= CharacterTable( "6.Fi22" );;
gap> facttbl:= CharacterTable( "3.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "3.Fi22" );;
1: subgroup $O_8^+(2):S_3 \rightarrow (Fi_{22},4)$, degree 370656 (2 cand.)
2: subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
3: subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
4: subgroup $O_8^+(2):2 \rightarrow (Fi_{22},6)$, degree 1111968 (2 cand.)
From the discussion of the cases 2.Fi22 and 3.Fi22,
we conclude that the maximal subgroups of the type O8+(2).S3 lift to
groups of the type 6 ×O8+(2).S3 in 6.Fi22.
So Lemma 2.3 (iii) yields two classes of O8+(2):S3 type
subgroups, which induce different permutation characters.
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );
6.Fi22: O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 22, 28, 30, 46, 55, 76, 104, 131, 141, 215 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, 0, faith[1], "all" );
G = 6.Fi22: point stabilizer O8+(2).3.2, ranks [ 14, 14 ]
[ "1a+351ab+3080a+13650a+13728b+19305ab+42120ab+45045a+48048c+61776cd",
"1a+351ab+3080a+13650a+13728a+19305ab+42120ab+45045a+48048b+61776ab" ]
Each subgroup of the type O8+(2):3 in 3.Fi22 lifts to a direct product
in 6.Fi22, which yields one action;
as the two constituents that are permutation characters of 3.Fi22
are different,
we get two different permutation characters induced from O8+(2):3.
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0,
> Concatenation( faith[2], faith[3] ), "all" );
G = 6.Fi22: point stabilizer O8+(2).3, ranks [ 17, 25 ]
[ "1a+1001a+3080a+10725a+13650a+13728ab+27027ab+45045a+48048bc+50050a+96525ab+\
123552cd",
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+13728ab+19305ab+42120ab+45045a+48\
048bc+50050a+54054ab+61776abcd" ]
Each subgroup of the type O8+(2):2 in 3.Fi22 lifts to a direct product
in 6.Fi22, which yields two actions; the permutation characters are
different by the argument used for O8+(2):S3.
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[4], "all" );
G = 6.Fi22: point stabilizer O8+(2).2, ranks [ 25, 25 ]
[ "1a+351ab+352a+429a+3080a+13650a+13728b+19305ab+27027ab+42120ab+45045a+48048\
ac+61776cd+75075a+96525ab+123200a+123552cd",
"1a+351ab+352a+429a+3080a+13650a+13728a+19305ab+27027ab+42120ab+45045a+48048\
ab+61776ab+75075a+96525ab+123200a+123552cd" ]
gap> CompareWithDatabase( "6.Fi22", faith );
(Note that the rank 17 permutation character above was missing in the first
version of [LM].)
3.33 G = 6.Fi22.2
The group 6.Fi22.2 that is printed in the ATLAS has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types O8+(2):3 ×2 (twice)
and 2F4(2) (twice).
gap> tbl2:= CharacterTable( "6.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
1 cand.)
16: subgroup ${^2F_4(2)}$, degree 21555072 (1 cand.)
Each O8+(2):3 ×2 type subgroup of 3.Fi22.2 gives rise to two
subgroups of the same type in 6.Fi22.2, so we get two classes inducing
the same permutation character.
(Since there are O8+(2).3 ×2 type subgroups also inside 6.Fi22,
we must use "extending" as the last argument of VerifyCandidates.)
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
G = 6.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 16 ]
[ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++13728ab+19305ab+42120ab\
+45045a^++48048bc+50050a^++54054ab+61776adbc" ]
The subgroup of the type 6 ×2F4(2)′ of 6.Fi22 extends
to 6 ×2F4(2) in 6.Fi22.2, which contains two subgroups
of the type 2F4(2), by Lemma 2.3;
so we get two classes of such subgroups,
which induce the same permutation character.
gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
G = 6.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 22 ]
[ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+133056a^{\\p\
m}+289575a^-+386100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350\
efgh+1663200ab+1796256adbc" ]
gap> faith[6]:= faith[6]{ [ 1, 1 ] };;
gap> faith[16]:= faith[16]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "6.Fi22.2", faith );
The group (6.Fi22.2)∗ of the isoclinism type that is not printed
in the ATLAS has two faithful multiplicity-free permutation actions,
with point stabilizers of the type O8+(2):S3 (twice).
gap> facttbl:= CharacterTable( "Fi22.2" );;
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
2 cand.)
The existence of O8+(2):S3 type subgroups (not contained in 6.Fi22)
follows from Lemma 2.2 and the existence of these subgroups in
(2.Fi22.2)∗; we get one class for each of the two classes in
(2.Fi22.2)∗, with different permutation characters.
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = Isoclinic(6.Fi22.2): point stabilizer O8+(2).3.2, ranks [ 12, 16 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+27027ab+45045a^++48048bc+500\
50a^-+96525ab+123552cd",
"1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++13728ab+19305ab+42120ab\
+45045a^++48048bc+50050a^-+54054ab+61776adbc" ]
gap> CompareWithDatabase( "Isoclinic(6.Fi22.2)", faith );
3.34 G = 2.Co1
The group 2.Co1 has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Co2 and Co3,
respectively, by Lemma 2.1.
gap> tbl:= CharacterTable( "2.Co1" );;
gap> faith:= FaithfulCandidates( tbl, "Co1" );;
1: subgroup $Co_2$, degree 196560 (1 cand.)
5: subgroup $Co_3$, degree 16773120 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Co2" ), tbl, 0, faith[1], "all" );
G = 2.Co1: point stabilizer Co2, ranks [ 7 ]
[ "1a+24a+299a+2576a+17250a+80730a+95680a" ]
gap> VerifyCandidates( CharacterTable( "Co3" ), tbl, 0, faith[5], "all" );
G = 2.Co1: point stabilizer Co3, ranks [ 12 ]
[ "1a+24a+299a+2576a+17250a+80730a+95680a+376740a+1841840a+2417415a+5494125a+6\
446440a" ]
gap> CompareWithDatabase( "2.Co1", faith );
3.35 G = 3.F3+
The group 3.F3+ has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi23 and O10−(2),
respectively, by Lemma 2.1.
gap> tbl:= CharacterTable( "3.F3+" );;
gap> faith:= FaithfulCandidates( tbl, "F3+" );;
1: subgroup $Fi_{23}$, degree 920808 (1 cand.)
2: subgroup $O_{10}^-(2)$, degree 150532080426 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[1], "all" );
G = 3.F3+: point stabilizer Fi23, ranks [ 7 ]
[ "1a+783ab+57477a+249458a+306153ab" ]
gap> VerifyCandidates( CharacterTable( "O10-(2)" ), tbl, 0, faith[2], "all" );
G = 3.F3+: point stabilizer O10-(2), ranks [ 43 ]
[ "1a+783ab+8671a+57477a+64584ab+249458a+306153ab+555611a+1666833a+6724809ab+1\
9034730ab+35873145a+43779879ab+48893768a+79452373a+195019461ab+203843871ab+415\
098112a+1050717096ab+1264015025a+1540153692a+1818548820ab+2346900864a+32086535\
25a+10169903744a+10726070355ab+13904165275a+15016498497ab+17161712568a+2109675\
1104ab" ]
gap> CompareWithDatabase( "3.F3+", faith );
3.36 G = 3.F3+.2
The group 3.F3+.2 has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi23 ×2 and O10−(2).2,
respectively, by Lemma 2.2.
gap> tbl2:= CharacterTable( "3.F3+.2" );;
gap> faith:= FaithfulCandidates( tbl2, "F3+.2" );;
1: subgroup $Fi_{23} \times 2$, degree 920808 (1 cand.)
3: subgroup $O_{10}^-(2).2$, degree 150532080426 (1 cand.)
gap> VerifyCandidates( CharacterTable( "2xFi23" ), tbl, tbl2, faith[1], "all" );
G = 3.F3+.2: point stabilizer 2xFi23, ranks [ 5 ]
[ "1a^++783ab+57477a^++249458a^++306153ab" ]
gap> VerifyCandidates( CharacterTable( "O10-(2).2" ), tbl, tbl2, faith[3], "all" );
G = 3.F3+.2: point stabilizer O10-(2).2, ranks [ 30 ]
[ "1a^++783ab+8671a^-+57477a^++64584ab+249458a^++306153ab+555611a^-+1666833a^+\
+6724809ab+19034730ab+35873145a^++43779879ab+48893768a^-+79452373a^++195019461\
ab+203843871ab+415098112a^-+1050717096ab+1264015025a^++1540153692a^++181854882\
0ab+2346900864a^-+3208653525a^++10169903744a^-+10726070355ab+13904165275a^++15\
016498497ab+17161712568a^++21096751104ab" ]
gap> CompareWithDatabase( "3.F3+.2", faith );
The group 2.B has one faithful multiplicity-free permutation action,
with point stabilizer of the type Fi23, by Lemma 2.1.
gap> tbl:= CharacterTable( "2.B" );;
gap> faith:= FaithfulCandidates( tbl, "B" );;
4: subgroup $Fi_{23}$, degree 2031941058560000 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[4], "all" );
G = 2.B: point stabilizer Fi23, ranks [ 34 ]
[ "1a+4371a+96255a+96256a+9458750a+10506240a+63532485a+347643114a+356054375a+4\
10132480a+4221380670a+4275362520a+8844386304a+9287037474a+13508418144a+3665765\
3760a+108348770530a+309720864375a+635966233056a+864538761216a+1095935366250a+4\
322693806080a+6145833622500a+6619124890560a+10177847623680a+12927978301875a+38\
348970335820a+60780833777664a+89626740328125a+110949141022720a+211069033500000\
a+284415522641250b+364635285437500a+828829551513600a" ]
gap> CompareWithDatabase( "2.B", faith );
4 Appendix: Explicit Computations with Groups
Only in the proofs for the groups involving M22, explicit computations
with the groups were necessary.
These computations are collected in this appendix.
4.1 24:A6 type subgroups in 2.M22
We show that the preimage in 2.M22 of each maximal subgroup of the type
24:A6 in M22 contains one class of subgroups of the type
2 ×24:A5.
For that, we first note that there are two classes of subgroups of the type
24:A5 inside 24:A6, and that the A5 subgroups lift to groups
of the type 2 ×A5 because 2.M22 does not admit an embedding of
2.A6.
gap> tbl:= CharacterTable( "2.M22" );;
gap> PossibleClassFusions( CharacterTable( "2.A6" ), tbl );
[ ]
Now we fetch a permutation representation of 2.M22 on 352 points,
from the ATLAS of Group Representations (see [Wil]),
via the GAP package AtlasRep (see [Bre04a]),
and compute generators for the second class of maximal subgroups,
via the straight line program for M22.
gap> LoadPackage( "atlasrep" );
true
gap> gens:= OneAtlasGeneratingSet( "2.M22", NrMovedPoints, 352 );;
gap> slp:= AtlasStraightLineProgram( "M22", "maxes", 2 );;
gap> sgens:= ResultOfStraightLineProgram( slp.program, gens.generators );;
gap> s:= Group( sgens );; Size( s );
11520
gap> 2^5 * 360;
11520
The subgroup acts intransitively on the 352 points.
We switch to the representation on 192 points,
and compute the normal subgroup N of order 25.
gap> orbs:= Orbits( s, MovedPoints( s ) );;
gap> List( orbs, Length );
[ 160, 192 ]
gap> s:= Action( s, orbs[2] );;
gap> Size( s );
11520
gap> syl2:= SylowSubgroup( s, 2 );;
gap> repeat
> x:= Random( syl2 );
> n:= NormalClosure( s, SubgroupNC( s, [ x ] ) );
> until Size( n ) = 32;
The point stabilizer S in this group has type A5,
and generates together with N one of the desired subgroups of the type
25:A5.
However, S does not normalize a subgroup of order 24,
and so there is no subgroup of the type 24:A5.
gap> stab:= Stabilizer( s, 192 );;
gap> sub:= ClosureGroup( n, stab );;
gap> Size( sub );
1920
gap> Set( List( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
[ 1, 2, 32 ]
A representative of the other class of A5 type subgroups can be found
by taking an element x of order three that is not conjugate to one in S,
and to choose an element y of order five such that the product is an
involution.
gap> syl3:= SylowSubgroup( s, 3 );;
gap> repeat three:= Random( stab ); until Order( three ) = 3;
gap> repeat other:= Random( syl3 );
> until Order( other ) = 3 and not IsConjugate( s, three, other );
gap> syl5:= SylowSubgroup( s, 5 );;
gap> repeat y:= Random( syl5 )^Random( s ); until Order( other*y ) = 2;
gap> a5:= Group( other, y );;
gap> IsConjugate( s, a5, stab );
false
gap> sub:= ClosureGroup( n, a5 );;
gap> Size( sub );
1920
gap> Set( List( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
[ 1, 2, 16, 32 ]
This proves the existence of one class of the desired subgroups.
Finally, we show that the character table of these groups is indeed
the one we used in Section 3.3.
gap> g:= First( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) = 16 );;
gap> compl:= ClosureGroup( a5, g );;
gap> Size( compl );
960
gap> tbl:= CharacterTable( compl );;
gap> IsRecord( TransformingPermutationsCharacterTables( tbl,
> CharacterTable( "P1/G1/L1/V1/ext2" ) ) );
true
4.2 24:S5 type subgroups in M22.2
A maximal subgroup of the type 24:S6 in M22.2 is perhaps easiest
found as the point stabilizer in the degree 77 permutation representation.
In order to find its index 6 subgroups,
the degree 22 permutation representation of M22.2 is more suitable
because the restriction to the 24:S6 type subgroup has orbits of the
lengths 6 and 16, where the action of the orbit of length 6 is the
natural permutation action of S6.
So we choose the sum of the two representations, of total degree 99.
For convenience, we find this representation as the point stabilizer in the
degree 100 representation of HS.2, which is contained in the ATLAS
of Group Representations (see [Wil]).
gap> gens:= OneAtlasGeneratingSet( "HS.2", NrMovedPoints, 100 );;
gap> stab:= Stabilizer( Group( gens.generators ), 100 );;
gap> orbs:= Orbits( stab, MovedPoints( stab ) );;
gap> List( orbs, Length );
[ 77, 22 ]
gap> pnt:= First( orbs, x -> Length( x ) = 77 )[1];;
gap> m:= Stabilizer( stab, pnt );;
gap> Size( m );
11520
Now we find two nonconjugate subgroups of the type 24:S5 as the stabilizer
of a point and of a total in S6, respectively (cf. [CCN+85,p. 4]).
gap> orbs:= Orbits( m, MovedPoints( m ) );;
gap> List( orbs, Length );
[ 60, 16, 6, 16 ]
gap> six:= First( orbs, x -> Length( x ) = 6 );;
gap> p:= ( six[1], six[2] )( six[3], six[4] )( six[5], six[6] );;
gap> conj:= ( six[2], six[4], six[5], six[6], six[3] );;
gap> total:= List( [ 0 .. 4 ], i -> p^( conj^i ) );;
gap> stab1:= Stabilizer( m, six[1] );;
gap> stab2:= Stabilizer( m, Set( total ), OnSets );;
gap> IsConjugate( m, stab1, stab2 );
false
We identify the character tables of the two groups in the GAP Character
Table Library.
gap> s1:= CharacterTable( stab1 );;
gap> s2:= CharacterTable( stab2 );;
gap> NrConjugacyClasses( s1 ); NrConjugacyClasses( s2 );
12
18
gap> lib1:= CharacterTable( "2^4:s5" );;
gap> IsRecord( TransformingPermutationsCharacterTables( lib1, s1 ) );
true
gap> lib2:= CharacterTable( "w(d5)" );;
gap> IsRecord( TransformingPermutationsCharacterTables( lib2, s2 ) );
true
The first subgroup does not lead to multiplicity-free permutation characters
of 2.M22.2.
Note that there are two classes of subgroups of this type in M22.2,
one of them is contained in M22 and the other is not.
The action on the cosets of the former is multiplicity-free,
but it does not lift to a multiplicity-free candidate of 2.M22.2;
and the action on the cosets of the latter is not multiplicity-free.
gap> tbl:= CharacterTable( "M22" );;
gap> tbl2:= CharacterTable( "M22.2" );;
gap> s1fustbl2:= PossibleClassFusions( s1, tbl2 );
[ [ 1, 2, 2, 4, 4, 2, 5, 3, 7, 5, 10, 6 ],
[ 1, 2, 12, 15, 4, 2, 5, 3, 16, 15, 17, 6 ] ]
gap> pi:= List( s1fustbl2, map -> Induced( s1, tbl2,
> [ TrivialCharacter( s1 ) ], map )[1] );
[ Character( CharacterTable( "M22.2" ), [ 462, 46, 12, 6, 6, 2, 4, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M22.2" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0,
0, 56, 0, 0, 12, 2, 2, 0, 0, 0, 0 ] ) ]
gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
[ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+154a^{\\pm}",
"1a^++21(a^+)^{2}+55a^++154a^++210a^+" ]
So only the second type of 24:S5 type subgroups can lift to the
multiplicity-free candidate in question,
and this situation is dealt with in Section 3.4.
gap> s2fustbl2:= PossibleClassFusions( s2, tbl2 );;
gap> pi:= List( s2fustbl2, map -> Induced( s2, tbl2,
> [ TrivialCharacter( s2 ) ], map )[1] );
[ Character( CharacterTable( "M22.2" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0,
28, 20, 4, 8, 1, 2, 0, 1, 0, 0 ] ) ]
gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
[ "1a^++21a^++55a^++154a^++231a^-" ]
References
- [BL96]
-
Thomas Breuer and Klaus Lux, The multiplicity-free permutation characters
of the sporadic simple groups and their automorphism groups, Comm. Alg.
24 (1996), no. 7, 2293-2316.
- [Bre04a]
-
Thomas Breuer, Manual for the GAP 4 Package AtlasRep, Version 1.2,
Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany,
2004.
- [Bre04b]
-
Thomas Breuer, Manual for the GAP Character Table Library, Version
1.1, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany,
2004.
- [CCN+85]
-
J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker,
and R[obert] A. Wilson, Atlas of finite groups, Oxford University
Press, 1985.
- [GAP04]
-
The GAP Group, GAP - Groups, Algorithms, and Programming, Version
4.4, 2004, http://www.gap-system.org.
- [Höh01]
-
Ines Höhler, Vielfachheitsfreie Permutationsdarstellungen und die
Invarianten zugehöriger Graphen, Examensarbeit, Lehrstuhl D
für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 2001.
- [LM]
-
S. A. Linton and Z. E. Mpono, Multiplicity-free permutation characters of
covering groups of sporadic simple groups.
- [Mül03]
-
Jürgen Müller, On endomorphism rings and character tables,
Habilitationsschrift, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 2003.
- [Wil]
-
Robert A. Wilson, ATLAS of Finite Group Representations,
http://www.mat.bham.ac.uk/atlas/.
File translated from
TEX
by
TTH,
version 3.55.
On 31 Mar 2004, 10:54.