Here we give an example to give the reader an idea what Circle is able to compute.
It was proved in [KS04] that if R is a finite nilpotent two-generated algebra over a field of characteristic p>3 whose adjoint group has at most three generators, then the dimension of R is not greater than 9. Also, an example of the 6-dimensional such algebra with the 3-generated adjoint group was given there. We will construct the algebra from this example and investigate it using Circle. First we create two matrices that determine its generators:
gap> x:=[ [ 0, 1, 0, 0, 0, 0, 0 ], > [ 0, 0, 0, 1, 0, 0, 0 ], > [ 0, 0, 0, 0, 1, 0, 0 ], > [ 0, 0, 0, 0, 0, 0, 1 ], > [ 0, 0, 0, 0, 0, 1, 0 ], > [ 0, 0, 0, 0, 0, 0, 0 ], > [ 0, 0, 0, 0, 0, 0, 0 ] ];; gap> y:=[ [ 0, 0, 1, 0, 0, 0, 0 ], > [ 0, 0, 0, 0,-1, 0, 0 ], > [ 0, 0, 0, 1, 0, 1, 0 ], > [ 0, 0, 0, 0, 0, 1, 0 ], > [ 0, 0, 0, 0, 0, 0,-1 ], > [ 0, 0, 0, 0, 0, 0, 0 ], > [ 0, 0, 0, 0, 0, 0, 0 ] ];; |
Now we construct this algebra in characteristic five and check its basic properties:
gap> R := Algebra( GF(5), One(GF(5))*[x,y] ); <algebra over GF(5), with 2 generators> gap> Dimension( R ); 6 gap> Size( R ); 15625 gap> RadicalOfAlgebra( R ) = R; true |
Then we compute the adjoint group of R
. During the computation a warning will be displayed. It is caused by the method for IsGeneratorsOfMagmaWithInverses
defined in the file gap4r4/lib/grp.gi
from the GAP library, and may be safely ignored.
gap> G := AdjointGroup( R ); #I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for [ CircleObject( [ [ 0*Z(5), Z(5), Z(5), Z(5)^3, Z(5), 0*Z(5), Z(5)^2 ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5), Z(5)^3, Z(5)^3, Z(5)^3 ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5), Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5), Z(5)^3 ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ] ) ] <group of size 15625 with 3 generators> |
Now we can find the generating set of minimal possible order for the group G
, and check that G
it is 3-generated. To do this, first we need to convert it to the isomorphic PcGroup:
gap> f := IsomorphismPcGroup( G );; gap> H := Image( f ); Group([ f1, f2, f3, f4, f5, f6 ]) gap> gens := MinimalGeneratingSet( H ); [ f1, f2, f5 ] gap> gens:=List( gens, x -> UnderlyingRingElement(PreImage(f,x)));; gap> Perform(gens,Display); . 3 3 4 4 . 1 . . . 3 2 1 4 . . . 3 3 2 4 . . . . . 3 3 . . . . . 3 2 . . . . . . . . . . . . . . . 3 1 1 . . . . . . 3 4 . 1 . . . 1 3 2 . . . . . . 1 3 . . . . . 3 4 . . . . . . . . . . . . . . . 2 2 3 2 . 4 . . . 2 3 3 3 . . . 2 2 . 2 . . . . . 2 2 . . . . . 2 3 . . . . . . . . . . . . . . |
It appears that the adjoint group of the algebra from example will be 3-generated in characteristic three as well:
gap> R := Algebra( GF(3), One(GF(3))*[x,y] ); <algebra over GF(3), with 2 generators> gap> G := AdjointGroup( R ); #I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for [ CircleObject( [ [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0, Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ] ) ] <group of size 729 with 3 generators> gap> H := Image( IsomorphismPcGroup( G ) ); Group([ f1, f2, f3, f4, f5, f6 ]) gap> MinimalGeneratingSet( H ); [ f1, f2, f4 ] |
But this is not the case in characteristic two, where the adjoint group is 4-generated:
gap> R := Algebra( GF(2), One(GF(2))*[x,y] ); <algebra over GF(2), with 2 generators> gap> G := AdjointGroup( R ); #I default `IsGeneratorsOfMagmaWithInverses' method returns `true' for [ CircleObject( [ [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ) ] <group of size 64 with 4 generators> gap> H := Image( IsomorphismPcGroup( G ) ); Group([ f1, f2, f3, f4, f5, f6 ]) gap> MinimalGeneratingSet( H ); [ f1, f2, f4, f5 ] |
generated by GAPDoc2HTML