Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 Bib Ind
 Top of Book   Previous Chapter   Next Chapter 

9 Iterated monodromy groups
 9.1 Creators and operations for IMG FR machines
  9.1-1 IMGFRMachine

  9.1-2 IMGRelator

  9.1-3 Mating

  9.1-4 PolynomialFRMachine

  9.1-5 DBRationalIMGGroup

  9.1-6 ValueRational

  9.1-7 CriticalValuesQuadraticRational

  9.1-8 CanonicalQuadraticRational

  9.1-9 PostCriticalMachine
 9.2 Spiders
  9.2-1 RationalFunction

  9.2-2 IMGFRMachine

9 Iterated monodromy groups

Iterated monodromy machines are a special class of group FR machines (see Section 3) with attribute IMGRelator (9.1-2). This attribute records a cyclic ordering of the generators of the machine whose product is trivial.

The interpretation is the following: the machine encodes a Thurston map, i.e. a post-critically finite topological branched self-covering of the sphere S^2. Generators of the machine correspond to loops in the fundamental group of the sphere (punctured at post-critical points), that circle once counter-clockwise around a post-critical point. For more details on the connection between self-similar groups and Thurston maps, see [Nek05].

IMG FR elements are a bit different from group FR elements: while we said a group FR element is trivial if and only if its action on sequences is trivial, we say that an IMG FR element g is trivial if there exists an integer N such that unfolding N times the recursion for g yields only trivial states (as elements of the underlying free group).

9.1 Creators and operations for IMG FR machines

9.1-1 IMGFRMachine
> IMGFRMachine( m[, w] )( operation )

Returns: An IMG FR machine.

This function creates a new IMG FR machine, starting from a group FR machine m. If a state w is specified, it is used as IMG relator; otherwise, if some ordering of the generators is trivial, it is used as a relator; in other cases, an additional generator is added to the machine in such a way that a product of generators is trivial.

A standard FR machine can be recovered from an IMG FR machine by AsGroupFRMachine (3.3-4), AsMonoidFRMachine (3.3-4), and AsSemigroupFRMachine (3.3-4).

!!!

9.1-2 IMGRelator
> IMGRelator( m )( attribute )

Returns: The relator of the IMG FR machine.

This attribute stores the product of generators that is trivial. In essence, it records an ordering of the generators whose product is trivial in the punctured sphere's fundamental group.

9.1-3 Mating
> Mating( m1, m2[, w1, w2] )( operation )

Returns: An IMG FR machine.

This function mates two IMG FR machines. The arguments w1,w2 are IMG FR elements that represent adding elements; they may be omitted if m1,m2 contain pre-specified adding machines (through the attribute AddingElement (10.1-4)). The elements w1 and w2 must satisfy the same recursion.

The mating is defined as follows: one removes a disc around the adding machine in m1 and m2; one applies complex conjugation to m2; and one glues the hollowed spheres along their boundary circle.

!!!

9.1-4 PolynomialFRMachine
> PolynomialFRMachine( d, per, pre )( operation )
> PolynomialIMGMachine( d, per, pre )( operation )
> PolynomialMealyMachine( d, per, pre )( operation )

Returns: An IMG FR machine.

This function creates a group, IMG or Mealy machine that describes a topological polynomial. The polynomial is described symbolically in the language of external angles. For more details, see [DH84] and [DH85] (in the quadratic case), [BFH92] (in the preperiodic case), and [Poi] (in the general case).

d is the degree of the polynomial. per and pre are lists of angles or preangles. In what follows, angles are rational numbers, considered modulo 1. Each entry in per or pre is either a rational (interpreted as an angle), or a list of angles [a_1,dots,a_i] such that da_1=dots=da_i.

gap> PolynomialIMGMachine(2,[0],[]); # the adding machine
<FR machine with alphabet [ 1 .. 2 ] on Group( [ f1, f2 ] )/[ f2*f1 ]>
gap> Display(last);
 G  |     1        2
----+--------+--------+
 f1 | <id>,2     f1,1
 f2 |   f2,2   <id>,1
----+--------+--------+
Relator: f2*f1
gap> Display(PolynomialIMGMachine(2,[1/3],[])); # the Basilica
 G  |      1         2
----+---------+---------+
 f1 | f1^-1,2   f2*f1,1
 f2 |    f1,1    <id>,2
 f3 |    f3,2    <id>,1
----+---------+---------+
Relator: f3*f2*f1
gap> Display(PolynomialIMGMachine(2,[],[1/6])); # z^2+I
 G  |            1         2
----+---------------+---------+
 f1 | f1^-1*f2^-1,2   f2*f1,1
 f2 |          f1,1      f3,2
 f3 |          f2,1    <id>,2
 f4 |          f4,2    <id>,1
----+---------------+---------+
Relator: f4*f3*f2*f1
gap> PolynomialIMGMachine(3,[[0,1/3],[5/9,8/9]],[]);
<FR machine with alphabet [ 1 .. 3 ] on Group( [ f1, f2, f3 ] )/[ f3*f2*f1 ]>
gap> PolynomialIMGMachine(3,[[0,1/3]],[[5/9,8/9]]);
<FR machine with alphabet [ 1 .. 3 ] on Group( [ f1, f2, f3, f4 ] )/[ f4*f3*f2*f1 ]>

The following construct the examples in Poirier's paper:

PoirierExamples := function(arg)
    if arg=[1] then
        return PolynomialIMGMachine(2,[1/7],[]);
    elif arg=[2] then
        return PolynomialIMGMachine(2,[],[1/2]);
    elif arg=[3,1] then
        return PolynomialIMGMachine(2,[],[5/12]);
    elif arg=[3,2] then
        return PolynomialIMGMachine(2,[],[7/12]);
    elif arg=[4,1] then
        return PolynomialIMGMachine(3,[[3/4,1/12],[1/4,7/12]],[]);
    elif arg=[4,2] then
        return PolynomialIMGMachine(3,[[7/8,5/24],[5/8,7/24]],[]);
    elif arg=[4,3] then
        return PolynomialIMGMachine(3,[[1/8,19/24],[3/8,17/24]],[]);
    elif arg=[5] then
        return PolynomialIMGMachine(3,[[3/4,1/12],[3/8,17/24]],[]);
    elif arg=[6,1] then
        return PolynomialIMGMachine(4,[],[[1/4,3/4],[1/16,13/16],[5/16,9/16]]);
    elif arg=[6,2] then
        return PolynomialIMGMachine(4,[],[[1/4,3/4],[3/16,15/16],[7/16,11/16]]);
    elif arg=[7] then
        return PolynomialIMGMachine(5,[[0,4/5],[1/5,2/5,3/5]],[[1/5,4/5]]);
    elif arg=[9,1] then
        return PolynomialIMGMachine(3,[[0,1/3],[5/9,8/9]],[]);
    elif arg=[9,2] then
        return PolynomialIMGMachine(3,[[0,1/3]],[[5/9,8/9]]);
    fi;
end;

9.1-5 DBRationalIMGGroup
> DBRationalIMGGroup( sequence, or, rational, map )( function )

Returns: An IMG group from Dau's database.

This function returns the iterated monodromy group from a database of groups associated to quadratic rational maps. This database has been compiled by Dau Truong Tan [Tan02].

When called with no arguments, this command returns the database contents in raw form.

The argments can be a sequence; the first integer is the size of the postcritical set, the second argument is an index for the postcritical graph, and sometimes a third argument distinguishes between maps with same post-critical graph.

If the argument is a rational map, the command returns the IMG group of that map, assuming its CanonicalQuadraticRational (9.1-8) form exists in the database.

gap> DBRationalIMGGroup(z^2-1);
IMG((z-1)^2)
gap> DBRationalIMGGroup(z^2+1); # not post-critically finite
fail
gap> DBRationalIMGGroup(4,1,1);
IMG((z/h+1)^2|2h^3+2h^2+2h+1=0,h~-0.64)

9.1-6 ValueRational
> ValueRational( f, x )( function )

Returns: The value of f at x.

This function is almost identical to Value(f,x). It accepts infinity as an argument, and may return infinity as a value.

gap> z := Indeterminate(Rationals,"z");;
gap> ValueRational(1/z,infinity);
0
gap> ValueRational(1/z,0);
infinity
gap> ValueRational(1/z,1/2);
2

9.1-7 CriticalValuesQuadraticRational
> CriticalValuesQuadraticRational( f )( function )

Returns: The critical values of f.

This function returns, as a list, the values of f at places where the derivative of f vanishes.

gap> z := Indeterminate(Rationals,"z");;
gap> CriticalValuesQuadraticRational(z^2);
[ 0, infinity ]
gap> CriticalValuesQuadraticRational(z^2+1);
[ 1, infinity ]
gap> CriticalValuesQuadraticRational((z^2+1)/(z^2-1));
[ -1, 1 ]
gap> CriticalValuesQuadraticRational((z^2+1)/(z^2-z-1));
[ 2/5*E(5)-2/5*E(5)^2-2/5*E(5)^3+2/5*E(5)^4, -2/5*E(5)+2/5*E(5)^2+2/5*E(5)^3-2/5*E(5)^4 ]

9.1-8 CanonicalQuadraticRational
> CanonicalQuadraticRational( f )( function )

Returns: The canonical forms of the quadratic rational map f.

This function puts the quadratic rational map f in canonical form, that is, in form ((az+b)/(cz+d))^2, such that its critical values are 0 and infinity. Furthermore, it attempts to make f(infinity)=1, and if this is impossible to make f(0)=1.

The command returns the set of all maps with these properties.

gap> z := Indeterminate(Rationals,"z");;
gap> CanonicalQuadraticRational(z^2);
[ z^2 ]
gap> CanonicalQuadraticRational(z^2+1);
[ (z^2)/(z^2+2*z+1), z^2+2*z+1 ]
gap> CanonicalQuadraticRational((z^2+1)/(z^2-1));
[ (1/2*z^2+z+1/2)/(1/2*z^2-z+1/2), (-1/2*z^2+z-1/2)/(-1/2*z^2-z-1/2) ]

9.1-9 PostCriticalMachine
> PostCriticalMachine( f )( function )

Returns: The Mealy machine of f's post-critical orbit.

This function constructs a Mealy machine P on the alphabet [1], which describes the post-critical set of f. It is in fact an oriented graph with constant out-degree 1. It is most conveniently passed to Draw (5.2-1).

The attribute Correspondence(P) is the list of values associated with the stateset of P.

gap> z := Indeterminate(Rationals,"z");;
gap> m := PostCriticalMachine(z^2);
<Mealy machine on alphabet [ 1 ] with 2 states>
gap> Display(m);
   |  1
---+-----+
 a | a,1
 b | b,1
---+-----+
gap> Correspondence(m);
[ 0, infinity ]
gap> m := PostCriticalMachine(z^2-1);; Display(m); Correspondence(m);
   |  1
---+-----+
 a | c,1
 b | b,1
 c | a,1
---+-----+
[ -1, infinity, 0 ]

9.2 Spiders

9.2-1 RationalFunction
> RationalFunction( m )( operation )

Returns: A rational function.

!!!

!!!

9.2-2 IMGFRMachine
> IMGFRMachine( m )( operation )

Returns: An IMG FR machine.

!!!

!!!
 Top of Book   Previous Chapter   Next Chapter 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 Bib Ind

generated by GAPDoc2HTML