
Migrating to MatrixSSL 3

Overview
Who Is This Document For?
 2

Documentation Style Conventions
 2

Commercial Version Differences
 2

Changes to the Public API

Changes By Functional Areas
 3
Handshake Control and Application Data Exchange
 3

Client Session Initiation
 5

Server Session Initiation
 5

Re-handshakes and Changing Session Options
 5

Loading Key Material
 5

Client-side Session Resumption
 5

Changes by API Name
 6

Code Examples

Client Session Initiation and Handshake Control
 8
Code Example Prior to 3
 8

Code Example for version 3
 12

Encoding And Sending Application Data
 14
Code Example Prior to 3
 14

Code Example for version 3
 16

PeerSec Networks, Inc. 410 Broadway Ave E. #205 Seattle, WA 98102 T 425.646.7850 F 206.501.4366
support@peersec.com www.peersec.com

mailto:support@peersec.com
mailto:support@peersec.com
http://www.peersec.com
http://www.peersec.com

Overview

This document is a reference for developers that are moving to MatrixSSL 3 from any previous
version of the product.

Who Is This Document For?

• Software developers that are upgrading to MatrixSSL 3 from a previous version
• Anyone wanting to learn more about MatrixSSL 3

Documentation Style Conventions

• File names and directory paths are italicized.

• C code literals are distinguished with the Monaco font.

Commercial Version Differences

Some of the information in this document is relevant only to the commercially licensed version
of MatrixSSL. Sections of this document that refer to the commercial version will be shaded.

Upgrading to MatrixSSL 3 © 2002-2010
 2/16

Changes to the Public API

Changes By Functional Areas
These sections highlight the interface differences in 3 from a functionality perspective to help
developers understand where they will need to implement upgrades.

Handshake Control and Application Data Exchange

The main change to the MatrixSSL interface in version 3 is to internalize management of the
data buffers for the SSL handshake and application messages. MatrixSSL 3 still operates at a
buffer interface to remain transport-independent only now the user if freed from having to
manage the allocation and size of those buffers. MatrixSSL 3 now handles this automatically in
the library.

A small set of pre MatrixSSL 3 functions including: matrixSslDecode and matrixSslEncode
required the user to allocate and resize sslBuf_t data types for storing encoded and decoded
SSL data. Return codes such as SSL_FULL and SSL_PARTIAL were used to indicate how the user
should manage the buffers that stored the data.

This was a flexible design that worked well but there were two common problems:

1. The buffer management task was the most prone to user error during MatrixSSL integrations.
The matrixSslDecode function could be particularly susceptible to misuse. The buffer
related return codes of SSL_FULL and SSL_PARTIAL were conveyed using the same mechanism
as the general success or failure of the function, so it required the user to be very diligent in
handling all the numerous return cases. MatrixSSL 3 greatly simplifies this process and
removes much of the burden of error checking from the user.

2. API misuse potentially wasted memory. APIs previous to MatrixSSL 3 did not return any size

information back to the user, only buffer management codes. This resulted in users not being
able to optimize the growth of the sslBuf_t types. The user was required to grow the buffer
an unspecified amount and try to process the data again. In addition to the inefficiency of
growing buffers without a specific target size to work from, many integrators chose to avoid
the buffer resize issues altogether and simply allocated buffers to a maximum size from the
start creating unused allocated memory. MatrixSSL 3 optimizes memory usage and frees
developers from micromanaging buffers.

Upgrading to MatrixSSL 3 © 2002-2010
 3/16

The buffer management changes introduced in version 3 solves these two problems through a
new set of public interfaces that replace the matrixSslEncode and matrixSslDecode model.

The following table is the list of new APIs that control the handshaking and application data
exchange. Complete function details can be found in the MatrixSSL API document.

Function Added in 3 Description

matrixSslGetReadbuf Any time the application is expecting to receive data from a
peer this function must be called to retrieve an allocated buffer
that the incoming data should be read into.

matrixSslGetOutdata Any time the application is expecting to send data to a peer this
function must be called to retrieve the buffer containing the
encoded SSL buffer

matrixSslGetWritebuf This function is called when the user has application data that
needs to be sent to the peer. This function will return an
allocated buffer in which the user will copy the plaintext data
that needs to be encoded and sent to the peer.

matrixSslEncodeWritebuf This function is called when the user has application data that
needs to be sent to the peer. This function will encrypt the
plaintext data that has been copied into the buffer that was
previously returned from a call to matrixSslGetWritebuf.

matrixSslSentData This function must be called each time data has been sent to the
peer.

matrixSslReceivedData This function is used to indicate peer data has been copied into
a buffer that was retrieved from matrixSslGetReadbuf. The
decoding of data happens internally at this time and a plaintext
application-layer record may be output to the user.

matrixSslProcessedData This function is called after the user has finished processing
plaintext application data that was returned from
matrixSslReceivedData.

Upgrading to MatrixSSL 3 © 2002-2010
 4/16

Client Session Initiation

MatrixSSL 3 now allows developers to initiate an SSL session with a single call to
matrixSslNewClientSession. Previous versions required the client application to invoke
matrixSslNewSession, matrixSslSetCertValidator, and matrixSslEncodeClientHello.

Server Session Initiation

Server-side session initiation now uses matrixSslNewServerSession rather than
matrixSslNewSession.

Re-handshakes and Changing Session Options

MatrixSSL 3 has greatly simplified the re-handshake process and consolidated functionality into
a single API call: matrixSslEncodeRehandshake which is available to both clients and servers.
Previous versions required a number of different functions at various stages of the process. The
functions that have been removed for use with re-handshaking are:
 matrixSslSetCertValidator
 matrixSslAssignNewKeys
 matrixSslSetSessionOption
 matrixSslEncodeHelloRequest

Loading Key Material

The matrixSslReadKeys function has been replaced by a mechanism in which a new key
structure is first created and then specific key types are loaded into that structure. The new API
set is matrixSslNewKeys, matrixSslLoadRsaKeys (matrixSslLoadRsaKeysMem), and
matrixSslDeleteKeys.

Diffie-Hellman key loading uses the same model through the new matrixSslLoadDhParams
function.

Client-side Session Resumption

The mechanism for clients to perform session resumption has been improved. The new
mechanism is simply to pass a static sslSessionId_t structure pointer to
matrixSslNewClientSession that will be populated with the session id when the connection is
complete. Future calls to matrixSslNewClientSession can simply use the same structure
pointer to provide the session id information for session resumption. The new API
matrixSslInitSessionId will clear a sslSessionId_t structure. The functions
matrixSslGetSessionId and matrixSslFreeSessionId have been removed.

Upgrading to MatrixSSL 3 © 2002-2010
 5/16

Changes by API Name
This table shows how each public interface (or family of interfaces) has changed in MatrixSSL 3.
If an API is not in this table, there was no change to the prototype or functionality.

Pre-3 API 3 API Comments

matrixSslReadKeys
matrixSslReadKeysMem
matrixSslFreeKeys

matrixSslNewKeys
matrixSslLoadRsaKeys
matrixSslLoadRsaKeysMem
matrixSslDeleteKeys

matrixSslNewSession
matrixSslSetCertValidator

matrixSslNewClientSession
matrixSslNewServerSession

matrixSslEncodeClientHello matrixSslNewClientSession
matrixSslEncodeRehandshake

matrixSslEncodeHelloRequest matrixSslEncodeRehandshake

matrixSslAssignNewKeys
matrixSslSetSessionOption

matrixSslEncodeRehandshake

matrixSslDecode
matrixSslEncode
matrixSslHandshakeIsComplete

matrixSslGetReadbuf
matrixSslGetOutdata
matrixSslSentData
matrixSslReceivedData
matrixSslProcessedData
matrixSslGetWritebuf
matrixSslEncodeWritebuf

The MatrixSSL
Developer’s Guide
and the MatrixSSL
API documents are
the best source of
information for these
changes.

matrixSslEncodeClosureAlert matrixSslEncodeClosureAlert The prototype for this
function has changed.

matrixSslGetSessionId
matrixSslFreeSessionId

matrixSslNewClientSession
matrixSslInitSessionId

Upgrading to MatrixSSL 3 © 2002-2010
 6/16

Code Examples

The following examples highlight the major architectural and API differences from a source code
perspective between MatrixSSL version 3 and prior versions. This code is based on the PeerSec
implementations of the HTTPS client and server applications that are provided in the MatrixSSL
package. For purposes of brevity, a lot of error handling, code comments, and data definitions
have been left out from these code snippets and, as such, they are not intended for copy-and-
paste usage.

MatrixSSL APIs are highlighted in blue in the examples.

Upgrading to MatrixSSL 3 © 2002-2010
 7/16

Client Session Initiation and Handshake Control
This code comparison for SSL handshake functionality illustrates the amount of buffer
management surrounding matrixSslDecode was required in versions prior to 3. This is the
functional area that has resulted in the greatest changes to the application layer and, in general,
the developer will want to completely re-write the application layer for MatrixSSL 3 handshake
functionality.

Code Example Prior to 3

int sslClientConnection(sslConn_t *cp, sslKeys_t *keys,
 sslSessionId_t *id, short cipherSuite,
 int (*certValidator)(sslCertInfo_t *t, void *arg))
{
 unsigned char buf[1024];

 matrixSslNewSession(&cp->ssl, keys, id, 0);
 matrixSslSetCertValidator(cp->ssl, certValidator, keys);

 cp->insock.size = cp->outsock.size = 1024;
 cp->insock.start = cp->insock.end = cp->insock.buf =
 (unsigned char *)malloc(cp->insock.size);
 cp->outsock.start = cp->outsock.end = cp->outsock.buf =
 (unsigned char *)malloc(cp->outsock.size);
 cp->inbuf.size = 0;
 cp->inbuf.start = cp->inbuf.end = cp->inbuf.buf = NULL;

 matrixSslEncodeClientHello(cp->ssl, & cp->outsock, cipherSuite);
 socketWrite(cp->fd, & cp->outsock); /* Platform send() */

READ_MORE:
 rc = sslRead(cp, buf, sizeof(buf));
 if (rc == 0) {
 if (matrixSslHandshakeIsComplete(cp->ssl) == 0) {
 goto READ_MORE;
 }
 } else if (rc > 0) {
 goto READ_MORE;
 } else {
 return -1; /* error */
 }
 return 0;
}

Upgrading to MatrixSSL 3 © 2002-2010
 8/16

int sslRead(sslConn_t *cp, char *buf, int len)
{
 int bytes, rc, remaining;
 unsigned char	 error, alertLevel, alertDescription, performRead;

 if (cp->inbuf.buf) {
 if (cp->inbuf.start < cp->inbuf.end) {
 remaining = (int)(cp->inbuf.end - cp->inbuf.start);
 bytes = (int)min(len, remaining);
 memcpy(buf, cp->inbuf.start, bytes);
 cp->inbuf.start += bytes;
 return bytes;
 }
 free(cp->inbuf.buf);
 cp->inbuf.buf = NULL;
 }
 if (cp->insock.buf < cp->insock.start) {
 if (cp->insock.start == cp->insock.end) {
 cp->insock.start = cp->insock.end = cp->insock.buf;
 } else {
 memmove(cp->insock.buf, cp->insock.start,
 cp->insock.end - cp->insock.start);
 cp->insock.end -= (cp->insock.start - cp->insock.buf);
 cp->insock.start = cp->insock.buf;
 }
 }
 /* Read up to as many bytes as there are remaining in the buffer */
 performRead = 0;

READ_MORE:
 if (cp->insock.end == cp->insock.start || performRead) {
 performRead = 1;
 bytes = socketWrite(cp->fd, cp->insock);
 cp->insock.end += bytes;
 }
 cp->inbuf.start = cp->inbuf.end = cp->inbuf.buf = malloc(len);
 cp->inbuf.size = len;

DECODE_MORE:
 error = 0;
 alertLevel = 0;
 alertDescription = 0;

Upgrading to MatrixSSL 3 © 2002-2010
 9/16

 rc = matrixSslDecode(cp->ssl, &cp->insock, &cp->inbuf, &error, &alertLevel,
 &alertDescription);
 switch (rc) {
 case SSL_SUCCESS:
 return 0;

	 case SSL_PROCESS_DATA:
 rc = (int)(cp->inbuf.end - cp->inbuf.start);
 rc = min(rc, len);
 memcpy(buf, cp->inbuf.start, rc);
 cp->inbuf.start += rc;
 return rc;

 case SSL_SEND_RESPONSE:
 bytes = socketWrite(cp->fd, cp->inbuf);
 cp->inbuf.start = cp->inbuf.end = cp->inbuf.buf;
 return 0;

	 case SSL_ERROR:
 goto readError;

	 case SSL_ALERT:
	 goto readError;

 case SSL_PARTIAL:
 if (cp->insock.start == cp->insock.buf && cp->insock.end ==
 (cp->insock.buf + cp->insock.size)) {
 if (cp->insock.size > SSL_MAX_BUF_SIZE) {
 goto readError;
 }
 cp->insock.size *= 2;
 cp->insock.start = cp->insock.buf =
 (unsigned char *)realloc(cp->insock.buf, cp->insock.size);
 cp->insock.end = cp->insock.buf + (cp->insock.size / 2);
 }
 if (!performRead) {
 performRead = 1;
 free(cp->inbuf.buf);
 cp->inbuf.buf = NULL;
 goto READ_MORE;
 } else {

Upgrading to MatrixSSL 3 © 2002-2010
 10/16

 goto readZero;
 }

 case SSL_FULL:
 cp->inbuf.size *= 2;
 if (cp->inbuf.buf != (unsigned char*)buf) {
 free(cp->inbuf.buf);
 cp->inbuf.buf = NULL;
 }
 cp->inbuf.start = cp->inbuf.end = cp->inbuf.buf =
 (unsigned char *)malloc(cp->inbuf.size);
 goto DECODE_MORE;
 }

 readZero:
 if (cp->inbuf.buf == (unsigned char*)buf) {
 cp->inbuf.buf = NULL;
 }
 return 0;
 readError:
 if (cp->inbuf.buf == (unsigned char*)buf) {
 cp->inbuf.buf = NULL;
 }
 return -1;
}

Upgrading to MatrixSSL 3 © 2002-2010
 11/16

Code Example for version 3

int sslClientConnection(sslKeys_t *keys, sslSessionId_t *sid, SOCKET fd)
{
 int	 	 rc, transferred, len, complete;
 ssl_t	 	 *ssl;
 unsigned char	 *buf;

 matrixSslNewClientSession(&ssl, keys, sid, 0, certCb, NULL, NULL);

 WRITE_MORE:
 while ((len = matrixSslGetOutdata(ssl, &buf)) > 0) {
 transferred = socketWrite(fd, buf, len, 0);
 if ((rc = matrixSslSentData(ssl, transferred)) < 0) {
 goto L_CLOSE_ERR;
 }
 if (rc == MATRIXSSL_REQUEST_CLOSE) {
 closeConn(ssl, fd);
 return MATRIXSSL_SUCCESS;
 }
 if (rc == MATRIXSSL_HANDSHAKE_COMPLETE) {
 /* This occurs on a resumption handshake */
 if (httpWriteRequest(ssl) < 0) { /* application data write */
 goto L_CLOSE_ERR;
 }
 goto WRITE_MORE;
 }
 /* MATRIXSSL_REQUEST_SEND is handled by loop logic */
 }

 READ_MORE:
 if ((len = matrixSslGetReadbuf(ssl, &buf)) <= 0) {
 goto L_CLOSE_ERR;
 }
 transferred = socketRead(fd, buf, len, 0);
 if ((rc = matrixSslReceivedData(ssl, (int32)transferred, &buf,
 (uint32*)&len)) < 0) {
 goto L_CLOSE_ERR;
 }

 switch (rc) {

Upgrading to MatrixSSL 3 © 2002-2010
 12/16

 case MATRIXSSL_HANDSHAKE_COMPLETE:
 /* We got the Finished SSL message, initiate the HTTP req */
 httpWriteRequest(ssl); /* write application data */
 goto WRITE_MORE;

 case MATRIXSSL_APP_DATA:
 httpProcessResponse(buf, len); /* received application data */
 matrixSslProcessedData(ssl);
 closeConn(ssl, fd);
 return MATRIXSSL_SUCCESS;

 case MATRIXSSL_REQUEST_SEND:
 goto WRITE_MORE;

 case MATRIXSSL_REQUEST_RECV:
 goto READ_MORE;

 case MATRIXSSL_RECEIVED_ALERT:
 matrixSslProcessedData(ssl);
 goto READ_MORE;

 default:
 goto L_CLOSE_ERR;
 }
	
 L_CLOSE_ERR:
 matrixSslDeleteSession(ssl);
 return MATRIXSSL_ERROR;
}

Upgrading to MatrixSSL 3 © 2002-2010
 13/16

Encoding And Sending Application Data
Again, the first thing that will be obvious to the reader is how much buffer management
overhead was required in previous versions.

Code Example Prior to 3

int sslWriteAppData(sslConn_t *cp, char *buf, int len, int *status)
{
 int	 	 rc;

 *status = 0;

 if (cp->outsock.buf < cp->outsock.start) {
 if (cp->outsock.start == cp->outsock.end) {
 cp->outsock.start = cp->outsock.end = cp->outsock.buf;
 } else {
 memmove(cp->outsock.buf, cp->outsock.start,
 cp->outsock.end - cp->outsock.start);
 cp->outsock.end -= (cp->outsock.start - cp->outsock.buf);
 cp->outsock.start = cp->outsock.buf;
 }
 }
 /*
	 If there is buffered output data, the caller must be trying to
	 send the same amount of data as last time. We don't support
	 sending additional data until the original buffered request has
	 been completely sent.
 */
 if (cp->outBufferCount > 0 && len != cp->outBufferCount) {
 return -1;
 }
 /* If we don't have buffered data, encode the caller's data */
 if (cp->outBufferCount == 0) {

 RETRY_ENCODE:
 rc = matrixSslEncode(cp->ssl, (unsigned char *)buf, len, &cp->outsock);
 switch (rc) {
 case SSL_ERROR:
 return -1;

 case SSL_FULL:

Upgrading to MatrixSSL 3 © 2002-2010
 14/16

 if (cp->outsock.size > SSL_MAX_BUF_SIZE) {
 return -1;
 }
 cp->outsock.size *= 2;
 cp->outsock.buf =
 (unsigned char *)realloc(cp->outsock.buf, cp->outsock.size);
 cp->outsock.end =
 cp->outsock.buf + (cp->outsock.end - cp->outsock.start);
 cp->outsock.start = cp->outsock.buf;
 goto RETRY_ENCODE;
 }
 }
 /* We've got data to send */
 rc = send(cp->fd, (char *)cp->outsock.start,
 (int)(cp->outsock.end - cp->outsock.start), MSG_NOSIGNAL);
 if (rc == SOCKET_ERROR) {
 *status = getSocketError();
 return -1;
 }
 cp->outsock.start += rc;
 /*
 If we wrote it all return the length, otherwise remember the number of
 bytes passed in, and return 0 to be called again later.
 */
 if (cp->outsock.start == cp->outsock.end) {
 cp->outBufferCount = 0;
 return len;
 }
 cp->outBufferCount = len;
 return 0;
}

Upgrading to MatrixSSL 3 © 2002-2010
 15/16

Code Example for version 3

int32 int sslWriteAppData(ssl_t *cp, char *data, int len, SOCKET fd)
{
 unsigned char	 *buf;
 uint32	 	 available;
 in32	 	 rc;
	
 if ((available = matrixSslGetWritebuf(cp, &buf, len)) < 0) {
 return -1;
 }
 memcpy((char *)buf, data, available);
 if (matrixSslEncodeWritebuf(cp, strlen((char *)buf)) < 0) {
 return -1;
 }

WRITE_MORE:
 len = matrixSslGetOutdata(cp, &buf);
 transferred = send(fd, buf, len, 0);
 /* Indicate that we've written > 0 bytes of data */
 if ((rc = matrixSslSentData(cp, transferred)) < 0) {
 return -1;
 }
 if (rc == MATRIXSSL_REQUEST_SEND) {
 goto WRITE_MORE;
 }
 return 0;
}

Upgrading to MatrixSSL 3 © 2002-2010
 16/16

