
RepnDecomp

Decompose representations of finite
groups into irreducibles

1.3.0

2 January 2023

Kaashif Hymabaccus

Kaashif Hymabaccus
Email: kaashif@kaashif.co.uk
Homepage: https://kaashif.co.uk

mailto://kaashif@kaashif.co.uk
https://kaashif.co.uk

Contents

1 Introduction 3
1.1 Getting started with RepnDecomp . 3

2 Isomorphisms between representations 5
2.1 Finding explicit isomorphisms . 5
2.2 Testing isomorphisms . 6

3 Algorithms for unitary representations 8
3.1 Unitarising representations . 8
3.2 Decomposing unitary representations . 9

4 Miscellaneous useful functions 10
4.1 Predicates for representations . 10
4.2 Efficient summing over groups . 10
4.3 Space-efficient representation of tensors of matrices 11
4.4 Matrices and homomorphisms . 11
4.5 Representation theoretic functions . 12

5 Computing decompositions of representations 13
5.1 Block diagonalizing . 13
5.2 Algorithms due to the authors . 13
5.3 Algorithms due to Serre . 15

6 Centralizer (commutant) rings 18
6.1 Finding a basis for the centralizer . 18
6.2 Using the centralizer for computations . 19

Index 20

2

Chapter 1

Introduction

1.1 Getting started with RepnDecomp

This package allows computations of various decompositions of a representation ρ : G → GL(V)
where G is finite and V is a finite-dimensional C-vector space.

1.1.1 Installation

To install this package, refer to the installation instructions in the README file in the source code. It
is located here: https://github.com/gap-packages/RepnDecomp/blob/master/README.md.

1.1.2 Note on what is meant by a representation

Throughout this documentation, mathematical terminology is used e.g. representation. It is clear
what is meant mathematically, but it is not entirely clear what is meant in terms of GAP types -
what are you supposed to pass in when I say "pass in a representation". Occasionally I will not even
mention what we are passing in and assume the reader knows that rho or ρ refers to a representation.
A representation we can use is, in GAP, a homomorphism from a finite group to a matrix group
where all matrices have coefficients in a cyclotomic field (Cyclotomics is the union of all such
fields in GAP). You can check whether something you want to pass is suitable with the function
IsFiniteGroupLinearRepresentation (4.1.1).

Here’s an example of a representation rho in GAP:
Example

gap> G := SymmetricGroup(3);
Sym([1 .. 3])
gap> images := List(GeneratorsOfGroup(G), g -> PermutationMat(g, 3));
[[[0, 1, 0], [0, 0, 1], [1, 0, 0]],

[[0, 1, 0], [1, 0, 0], [0, 0, 1]]]
gap> rho := GroupHomomorphismByImages(G, Group(images));
[(1,2,3), (1,2)] -> [[[0, 1, 0], [0, 0, 1], [1, 0, 0]],

[[0, 1, 0], [1, 0, 0], [0, 0, 1]]]

1.1.3 API Overview

The algorithms implemented can be divided into two groups: methods due to Serre from his book
Linear Representations of Finite Groups, and original methods due to the authors of this package.

3

https://github.com/gap-packages/RepnDecomp/blob/master/README.md

RepnDecomp 4

The default is to use the algorithms due to Serre. If you pass the option method := "alternate"
to a function, it will use the alternate method. Passing the option parallel will try to compute in
parallel as much as possible. See the individual functions for options you can pass.

The main functions implemented in this package are:
For decomposing representations into canonical and irreducible direct summands:

• CanonicalDecomposition (5.3.1)

• IrreducibleDecomposition (5.3.2)

• IrreducibleDecompositionCollected (5.3.3)

For block diagonalising representations:

• BlockDiagonalBasisOfRepresentation (5.1.1)

• BlockDiagonalRepresentation (5.1.2)

For computing centraliser rings:

• CentralizerBlocksOfRepresentation (6.1.1)

• CentralizerOfRepresentation (6.1.2)

For testing isomorphism and computing isomorphisms (intertwining operators) between represen-
tations:

• LinearRepresentationIsomorphism (2.1.1)

• AreRepsIsomorphic (2.2.1)

• IsLinearRepresentationIsomorphism (2.2.2)

For testing unitarity of representations and the unitarisation of representations:

• UnitaryRepresentation (3.1.1)

• IsUnitaryRepresentation (3.1.2)

Chapter 2

Isomorphisms between representations

2.1 Finding explicit isomorphisms

2.1.1 LinearRepresentationIsomorphism

▷ LinearRepresentationIsomorphism(rho, tau[, rho_cent_basis, tau_cent_basis])
(function)

Returns: A matrix A or fail
Let ρ : G→GL(V) and τ : G→GL(W). If there exists a linear map A : V →W such that for all g∈

G, τ(g)A=Aρ(g), this function returns one such A. A is the isomorphism between the representations.
If the representations are not isomorphic, then fail is returned.

There are three methods that we can use to compute an isomorphism of linear representations, you
can select one by passing options to the function.

• use_kronecker: Assumes the matrices are small enough that their Kronecker products can fit
into memory. Uses GroupSumBSGS (4.2.1) and KroneckerProduct to compute an element of
the fixed subspace of ρ ⊗ τ∗.

• use_orbit_sum: Finds an isomorphism by summing orbits of the the action of ρ ⊗ τ∗ on
matrices. Note that orbits could be very large, so this could be as bad as summing over the
whole group.

• The default, sums over the whole group to compute the projection onto the fixed subspace.
Example

gap> G := SymmetricGroup(4);;
gap> irreps := IrreducibleRepresentations(G);;
gap> # rho and tau are isomorphic - they just have a different block order
> rho := DirectSumOfRepresentations([irreps[1], irreps[3], irreps[3]]);;
gap> tau := DirectSumOfRepresentations([irreps[3], irreps[1], irreps[3]]);;
gap> # tau2 is just tau with a basis change - still isomorphic
> B := RandomInvertibleMat(5);;
gap> tau2 := ComposeHomFunction(tau, x -> B^-1 * x * B);;
gap> # using the default implementation
> M := LinearRepresentationIsomorphism(rho, tau);;
gap> IsLinearRepresentationIsomorphism(M, rho, tau);
true
gap> M := LinearRepresentationIsomorphism(tau, tau2);;

5

RepnDecomp 6

gap> IsLinearRepresentationIsomorphism(M, tau, tau2);
true
gap> # using the kronecker sum implementation
> M := LinearRepresentationIsomorphism(tau, tau2 : use_kronecker);;
gap> IsLinearRepresentationIsomorphism(M, tau, tau2);
true
gap> # using the orbit sum implementation
> M := LinearRepresentationIsomorphism(tau, tau2 : use_orbit_sum);;
gap> IsLinearRepresentationIsomorphism(M, tau, tau2);
true
gap> # two distinct irreps are not isomorphic
> M := LinearRepresentationIsomorphism(irreps[1], irreps[2]);
fail

2.1.2 LinearRepresentationIsomorphismSlow

▷ LinearRepresentationIsomorphismSlow(rho, tau) (function)

Returns: A matrix A or fail
Gives the same result as LinearRepresentationIsomorphism (2.1.1), but this function uses a

simpler method which always involves summing over G, without using GroupSumBSGS (4.2.1). This
might be useful in some cases if computing a good BSGS is difficult. However, for all cases that have
been tested, it is slow (as the name suggests).

Example
gap> # Following on from the previous example
> M := LinearRepresentationIsomorphismSlow(rho, tau);;
gap> IsLinearRepresentationIsomorphism(M, rho, tau);
true

2.2 Testing isomorphisms

2.2.1 AreRepsIsomorphic

▷ AreRepsIsomorphic(rho, tau) (function)

Returns: true if rho and tau are isomorphic as representations, false otherwise.
Since representations of finite groups over C are determined by their characters, it is easy to check

whether two representations are isomorphic by checking if they have the same character. We try to
use characters wherever possible.

Example
gap> # Following on from the previous examples
> # Some isomorphic representations
> AreRepsIsomorphic(rho, tau);
true
gap> AreRepsIsomorphic(rho, tau2);
true
gap> # rho isn’t iso to irreps[1] since rho is irreps[1] plus some other stuff
> AreRepsIsomorphic(rho, irreps[1]);
false

RepnDecomp 7

2.2.2 IsLinearRepresentationIsomorphism

▷ IsLinearRepresentationIsomorphism(A, rho, tau) (function)

Returns: true if rho and tau are isomorphic as as representations with the isomorphism given
by the linear map A

This function tests if, for all g∈G, Aρ(g) = τ(g)A. That is, true is returned iff A is the intertwining
operator taking ρ to τ . that:

Example
gap> # We have already seen this function used heavily in previous examples.
> # If two representations are isomorphic, the following is always true:
> IsLinearRepresentationIsomorphism(LinearRepresentationIsomorphism(rho, tau), rho, tau);
true
gap> # Note: this test is sensitive to ordering:
> IsLinearRepresentationIsomorphism(LinearRepresentationIsomorphism(rho, tau), tau, rho);
false

Chapter 3

Algorithms for unitary representations

3.1 Unitarising representations

3.1.1 UnitaryRepresentation

▷ UnitaryRepresentation(rho) (function)

Returns: A record with fields basis_change and unitary_rep such that rho is isomorphic to
unitary_rep, differing by a change of basis basis_change. Meaning if L is basis_change and ρu is the
unitarised rho , then ∀g ∈ G : Lρu(g)L−1 = ρ(g).

Unitarises the given representation quickly, summing over the group using a base and strong gen-
erating set and unitarising with LDLDecomposition (3.1.3).

Example
gap> G := SymmetricGroup(3);;
gap> irreps := IrreducibleRepresentations(G);;
gap> # It happens that we are given unitary irreps, so
> # rho is also unitary (its blocks are unitary)
> rho := DirectSumOfRepresentations([irreps[1], irreps[2]]);;
gap> IsUnitaryRepresentation(rho);
true
gap> # Arbitrary change of basis
> A := [[-1, 1], [-2, -1]];;
gap> tau := ComposeHomFunction(rho, x -> A^-1 * x * A);;
gap> # Not unitary, but still isomorphic to rho
> IsUnitaryRepresentation(tau);
false
gap> AreRepsIsomorphic(rho, tau);
true
gap> # Now we unitarise tau
> tau_u := UnitaryRepresentation(tau);;
gap> # We get a record with the unitarised rep:
> AreRepsIsomorphic(tau, tau_u.unitary_rep);
true
gap> AreRepsIsomorphic(rho, tau_u.unitary_rep);
true
gap> # The basis change is also in the record:
> ForAll(G, g -> tau_u.basis_change * Image(tau_u.unitary_rep, g) = Image(tau, g) * tau_u.basis_change);
true

8

RepnDecomp 9

3.1.2 IsUnitaryRepresentation

▷ IsUnitaryRepresentation(rho) (function)

Returns: Whether rho is unitary, i.e. for all g ∈ G, ρ(g−1) = ρ(g)∗ (where ∗ denotes the
conjugate transpose).

Example
gap> # TODO: this example

3.1.3 LDLDecomposition

▷ LDLDecomposition(A) (function)

Returns: a record with two fields, L and D such that A = Ldiag(D)L∗. D is the 1×n vector which
gives the diagonal matrix diag(D) (where A is an n×n matrix).

Example
gap> A := [[3, 2*E(3)+E(3)^2, -3], [E(3)+2*E(3)^2, -3, 3], [-3, 3, -6]];;
gap> # A is a conjugate symmetric matrix
> A = ConjugateTranspose@RepnDecomp(A);
true
gap> # Note that A is not symmetric - the LDL decomposition works for any
> # conjugate symmetric matrix.
> A = TransposedMat(A);
false
gap> decomp := LDLDecomposition(A);;
gap> # The LDL decomposition is such that A = LDL^*, D diagonal, and L lower triangular.
> A = decomp.L * DiagonalMat(decomp.D) * ConjugateTranspose@RepnDecomp(decomp.L);
true
gap> decomp.L[1][2] = 0 and decomp.L[1][3] = 0 and decomp.L[2][3] = 0;
true

3.2 Decomposing unitary representations

3.2.1 IrreducibleDecompositionDixon

▷ IrreducibleDecompositionDixon(rho) (function)

Returns: a list of irreps in the decomposition of rho
NOTE: this is not implemented yet. Assumes that rho is unitary and uses an algorithm due to

Dixon to decompose it into unitary irreps.

Chapter 4

Miscellaneous useful functions

4.1 Predicates for representations

4.1.1 IsFiniteGroupLinearRepresentation (for IsGroupHomomorphism)

▷ IsFiniteGroupLinearRepresentation(rho) (attribute)

Returns: true or false
Tells you if rho is a linear representation of a finite group. The algorithms implemented in this

package work on these homomorphisms only.

4.1.2 IsFiniteGroupPermutationRepresentation (for IsGroupHomomorphism)

▷ IsFiniteGroupPermutationRepresentation(rho) (attribute)

Returns: true or false
Tells you if rho is a homomorphism from a finite group to a permutation group.

4.2 Efficient summing over groups

4.2.1 GroupSumBSGS

▷ GroupSumBSGS(G, summand) (function)

Returns: ∑g∈G summand(g)
Uses a basic stabiliser chain for G to compute the sum described above. This trick requires

summand to be a function (in the GAP sense) that defines a monoid homomorphism (in the math-
ematical sense). The computation of the stabiliser chain assumes G is a group. More precisely, if we
have the basic stabiliser chain:

{1}= G1 ≤ . . .≤ Gn = G

We traverse the chain from G1 to Gn, using the previous sum Gi−1 to build the sum Gi. We do this by
using the fact that (writing f for summand)

∑
g∈Gi

f (g) = ∑
r j

(
∑

h∈Gi−1

f (h)

)
f (r j)

where the r j are right coset representatives of Gi−1 in Gi. The condition on summand is satisfied if, for
example, it is a linear representation of a group G .

10

RepnDecomp 11

4.3 Space-efficient representation of tensors of matrices

Suppose we have representations of G, ρ and τ , with degree n and m. If we would like to construct the
tensor product representation of G, ρ⊗τ , the usual way to do it would be to take the Kronecker product
of the matrices. This means we now have to store very large nm×nm matrices for each generator of
G. This can be avoided by storing the tensor of matrices as pairs, essentially storing A⊗B as a pair
(A,B) and implementing group operations on top of these, along with some representation-theoretic
functions. It is only possible to guarantee an economical representation for pure tensors, i.e. matrices
of the form A⊗B. These are closed under group operations, so it is natural to define a group structure.

4.3.1 IsTensorProductOfMatricesObj (for IsMultiplicativeElementWithInverse)

▷ IsTensorProductOfMatricesObj(arg) (filter)

Returns: true or false
Position i in this representation stores the matrix Ai in the tensor product A1 ⊗A2.

4.3.2 IsTensorProductPairRep (for IsPositionalObjectRep)

▷ IsTensorProductPairRep(arg) (filter)

Returns: true or false
Position 1 stores the full Kronecker product of the matrices, this is very space inefficient and

supposed to be used as a last resort.

4.3.3 IsTensorProductKroneckerRep (for IsPositionalObjectRep)

▷ IsTensorProductKroneckerRep(arg) (filter)

Returns: true or false
More convenient constructor for a tensor product (automatically handles family)

4.3.4 TensorProductOfMatrices

▷ TensorProductOfMatrices(arg) (function)

This uses the multiplicativity of characters when taking tensor products to avoid having to compute
the trace of a big matrix.

4.3.5 CharacterOfTensorProductOfRepresentations

▷ CharacterOfTensorProductOfRepresentations(arg) (function)

4.4 Matrices and homomorphisms

4.4.1 ComposeHomFunction

▷ ComposeHomFunction(hom, func) (function)

Returns: Homomorphism g given by g(x) = func(hom(x)).

RepnDecomp 12

This is mainly for convenience, since it handles all GAP accounting issues regarding the range,
ByImages vs ByFunction, etc.

4.5 Representation theoretic functions

4.5.1 TensorProductRepLists

▷ TensorProductRepLists(list1, list2) (function)

Returns: All possible tensor products given by ρ ⊗τ where ρ : G → GL(V) is taken from list1
and τ : H → GL(W) is taken from list2 . The result is then a list of representations of G×H.

4.5.2 DirectSumOfRepresentations

▷ DirectSumOfRepresentations(list) (function)

Returns: Direct sum of the list of representations list

4.5.3 DegreeOfRepresentation

▷ DegreeOfRepresentation(rho) (function)

Returns: Degree of the representation rho . That is, Tr(ρ(eG)), where eG is the identity of the
group G that rho has as domain.

4.5.4 PermToLinearRep

▷ PermToLinearRep(rho) (function)

Returns: Linear representation ρ isomorphic to the permutation representation rho .

4.5.5 IsOrthonormalSet

▷ IsOrthonormalSet(S, prod) (function)

Returns: Whether S is an orthonormal set with respect to the inner product prod .

Chapter 5

Computing decompositions of
representations

5.1 Block diagonalizing

Given a representation ρ : G→GL(V), it is often desirable to find a basis for V that block diagonalizes
each ρ(g) with the block sizes being as small as possible. This speeds up matrix algebra operations,
since they can now be done block-wise.

5.1.1 BlockDiagonalBasisOfRepresentation

▷ BlockDiagonalBasisOfRepresentation(rho) (function)

Returns: Basis for V that block diagonalizes ρ .
Let G have irreducible representations ρi, with dimension di and multiplicity mi. The basis re-

turned by this operation gives each ρ(g) as a block diagonal matrix which has mi blocks of size di×di

for each i.

5.1.2 BlockDiagonalRepresentation

▷ BlockDiagonalRepresentation(rho) (function)

Returns: Representation of G isomorphic to ρ where the images ρ(g) are block diagonalized.
This is just a convenience operation that uses BlockDiagonalBasisOfRepresentation (5.1.1)

to calculate the basis change matrix and applies it to put ρ into the block diagonalised form.

5.2 Algorithms due to the authors

5.2.1 REPN_ComputeUsingMyMethod (for IsGroupHomomorphism)

▷ REPN_ComputeUsingMyMethod(rho) (attribute)

Returns: A record in the same format as REPN_ComputeUsingSerre (5.3.4)
Computes the same values as REPN_ComputeUsingSerre (5.3.4), taking the same options. The

heavy lifting of this method is done by LinearRepresentationIsomorphism (2.1.1), where there
are some further options that can be passed to influence algorithms used.

13

RepnDecomp 14

Example
gap> G := SymmetricGroup(4);;
gap> irreps := IrreducibleRepresentations(G);;
gap> rho := DirectSumOfRepresentations([irreps[4], irreps[5]]);;
gap> # Jumble rho up a bit so it’s not so easy for the library.
> A := [[3, -3, 2, -4, 0, 0], [4, 0, 1, -5, 1, 0], [-3, -1, -2, 4, -1, -2],
> [4, -4, -1, 5, -3, -1], [3, -2, 1, 0, 0, 0], [4, 2, 4, -1, -2, 1]];;
gap> rho := ComposeHomFunction(rho, B -> A^-1 * B * A);;
gap> # We’ve constructed rho from two degree 3 irreps, so there are a few
> # things we can check for correctness:
> decomposition := REPN_ComputeUsingMyMethod(rho);;
gap> # Two distinct irreps, so the centralizer has dimension 2
> Length(decomposition.centralizer_basis) = 2;
true
gap> # Two distinct irreps i.e. two invariant subspaces
> Length(decomposition.decomposition) = 2;
true
gap> # All subspaces are dimension 3
> ForAll(decomposition.decomposition, Vs -> Length(Vs) = 1 and Dimension(Vs[1]) = 3);
true
gap> # And finally, check that the block diagonalized representation
> # computed is actually isomorphic to rho:
> AreRepsIsomorphic(rho, decomposition.diagonal_rep);
true

5.2.2 REPN_ComputeUsingMyMethodCanonical (for IsGroupHomomorphism)

▷ REPN_ComputeUsingMyMethodCanonical(rho) (attribute)

Returns: A record in the same format as REPN_ComputeUsingMyMethod (5.2.1).
Performs the same computation as REPN_ComputeUsingMyMethod (5.2.1), but first splits the rep-

resentation into canonical summands using CanonicalDecomposition (5.3.1). This might reduce
the size of the matrices we need to work with significantly, so could be much faster.

If the option parallel is given, the decomposition of canonical summands into irreps is done in
parallel, which could be much faster.

Example
gap> # This is the same example as before, but splits into canonical
> # summands internally. It gives exactly the same results, up to
> # isomorphism.
> other_decomposition := REPN_ComputeUsingMyMethodCanonical(rho);;
gap> Length(other_decomposition.centralizer_basis) = 2;
true
gap> Length(other_decomposition.decomposition) = 2;
true
gap> ForAll(other_decomposition.decomposition, Vs -> Length(Vs) = 1 and Dimension(Vs[1]) = 3);
true
gap> AreRepsIsomorphic(rho, other_decomposition.diagonal_rep);
true

RepnDecomp 15

5.3 Algorithms due to Serre

Note: all computation in this section is actually done in the function REPN_ComputeUsingSerre
(5.3.4), the other functions are wrappers around it.

5.3.1 CanonicalDecomposition

▷ CanonicalDecomposition(rho) (function)

Returns: List of vector spaces Vi, each G-invariant and a direct sum of isomorphic irreducibles.
That is, for each i, Vi ∼=⊕ jWi (as representations) where Wi is an irreducible G-invariant vector space.

Computes the canonical decomposition of V into ⊕i Vi using the formulas for projections V →Vi

due to Serre. You can pass in the option irreps with a list of irreps of G, and this will be used
instead of computing a complete list ourselves. If you already know which irreps will appear in ρ , for
instance, this will save time.

Example
gap> # This is the trivial group
> G := Group(());;
gap> # The trivial group has only one representation per degree, so a
> # degree d representation decomposes into a single canonical summand
> # containing the whole space
> rho := FuncToHom@RepnDecomp(G, g -> IdentityMat(3));;
gap> canonical_summands_G := CanonicalDecomposition(rho);
[(Cyclotomics^3)]
gap> # More interesting example, S_3
> H := SymmetricGroup(3);;
gap> # The standard representation: a permutation to the corresponding
> # permutation matrix.
> tau := FuncToHom@RepnDecomp(H, h -> PermutationMat(h, 3));;
gap> # Two canonical summands corresponding to the degree 2 and
> # trivial irreps (in that order)
> List(CanonicalDecomposition(tau), Dimension);
[2, 1]

5.3.2 IrreducibleDecomposition

▷ IrreducibleDecomposition(rho) (function)

Returns: List of vector spaces Wj such that V =⊕ jWj and each Wj is an irreducible G-invariant
vector space.

Computes the decomposition of V into irreducible subprepresentations.
Example

gap> # The trivial group has 1 irrep of degree 1, so rho decomposes into 3
> # lines.
> irred_decomp_G := IrreducibleDecomposition(rho);
[rec(basis := [[1, 0, 0]]), rec(basis := [[0, 1, 0]]),

rec(basis := [[0, 0, 1]])]
gap> # The spaces are returned in this format - explicitly keeping the
> # basis - since this basis block diagonalises rho into the irreps,
> # which are the smallest possible blocks. This is more obvious with
> # H.
> irred_decomp_H := IrreducibleDecomposition(tau);

RepnDecomp 16

[rec(basis := [[1, 1, 1]]),
rec(basis := [[1, E(3), E(3)^2], [1, E(3)^2, E(3)]])]

gap> # Using the basis vectors given there block diagonalises tau into
> # the two blocks corresponding to the two irreps:
> nice_basis := [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]];;
gap> tau_diag := ComposeHomFunction(tau, X -> nice_basis^-1 * X * nice_basis);
[(1,2,3), (1,2)] -> [[[1, 0, 0], [0, E(3), 0], [0, 0, E(3)^2]],

[[1, 0, 0], [0, 0, E(3)^2], [0, E(3), 0]]]

5.3.3 IrreducibleDecompositionCollected

▷ IrreducibleDecompositionCollected(rho) (function)

Returns: List of lists Vi of vector spaces Vi j such that V =⊕i ⊕ j Vi j and Vik ∼=Vil for all i, k and l
(as representations).

Computes the decomposition of V into irreducible subrepresentations, grouping together the iso-
morphic subrepresentations.

5.3.4 REPN_ComputeUsingSerre (for IsGroupHomomorphism)

▷ REPN_ComputeUsingSerre(rho) (attribute)

Returns: A record, in the format described below
This function does all of the computation and (since it is an attribute) saves the results. Doing

all of the calculations at the same time ensures consistency when it comes to irrep ordering, block
ordering and basis ordering. There is no canonical ordering of irreps, so this is crucial.

irreps is the complete list of irreps involved in the direct sum decomposition of rho , this can
be given in case the default (running Dixon’s algorithm) is too expensive, or e.g. you don’t want
representations over Cyclotomics.

The return value of this function is a record with fields:

• basis: The basis that block diagonalises ρ , see BlockDiagonalBasisOfRepresentation
(5.1.1).

• diagonal_rep: ρ , block diagonalised with the basis above. See
BlockDiagonalRepresentation (5.1.2)

• decomposition: The irreducible G-invariant subspaces, collected according to isomorphism,
see IrreducibleDecompositionCollected (5.3.3)

• centralizer_basis: An orthonormal basis for the centralizer ring of ρ , written in block form.
See CentralizerBlocksOfRepresentation (6.1.1)

Pass the option parallel for the computations per-irrep to be done in parallel.
Pass the option irreps with the complete list of irreps of ρ to avoid recomputing this list (could

be very expensive)
Example

gap> # Does the same thing we have done in the examples above, but all in
> # one step, with as many subcomputations reused as possible
> REPN_ComputeUsingSerre(tau);
rec(basis := [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]],

RepnDecomp 17

centralizer_basis := [[[[1]], [[0, 0], [0, 0]]],
[[[0]], [[1, 0], [0, 1]]]],

decomposition := [[rec(basis := [[1, 1, 1]])], [],
[rec(basis := [[1, E(3), E(3)^2], [1, E(3)^2, E(3)]])]],

diagonal_rep := [(1,2,3), (1,2)] ->
[[[1, 0, 0], [0, E(3), 0], [0, 0, E(3)^2]],

[[1, 0, 0], [0, 0, E(3)^2], [0, E(3), 0]]])
gap> # You can also do the computation in parallel:
> REPN_ComputeUsingSerre(tau : parallel);;
gap> # Or specify the irreps if you have already computed them:
> irreps_H := IrreducibleRepresentations(H);;
gap> REPN_ComputeUsingSerre(tau : irreps := irreps_H);;

Chapter 6

Centralizer (commutant) rings

6.1 Finding a basis for the centralizer

6.1.1 CentralizerBlocksOfRepresentation

▷ CentralizerBlocksOfRepresentation(rho) (function)

Returns: List of vector space generators for the centralizer ring of ρ(G), written in the basis given
by BlockDiagonalBasisOfRepresentation (5.1.1). The matrices are given as a list of blocks.

Let G have irreducible representations ρi with multiplicities mi. The centralizer has dimension
∑i m2

i as a C-vector space. This function gives the minimal number of generators required.
Example

gap> G := DihedralGroup(8);;
gap> irreps := IrreducibleRepresentations(G);;
gap> # rho is the sum of two isomorphic degree 1 irreps, and a degree
> # 2 irrep.
> rho := DirectSumOfRepresentations([irreps[4], irreps[4], irreps[5]]);;
gap> # Compute a basis for the centralizer (in blocks)
> cent_basis_blocks := CentralizerBlocksOfRepresentation(rho);;
gap> # Verify that the dimension is the sum of the multiplicities squared,
> # in this case 2^2 + 1 = 5.
> Length(cent_basis_blocks) = 5;
true

6.1.2 CentralizerOfRepresentation

▷ CentralizerOfRepresentation(arg) (function)

Returns: List of vector space generators for the centralizer ring of ρ(G).
This gives the same result as CentralizerBlocksOfRepresentation (6.1.1), but with the ma-

trices given in their entirety: not as lists of blocks, but as full matrices.
Example

gap> # This is the actual basis for the centralizer.
> cent_basis := CentralizerOfRepresentation(rho);;
gap> # All matrices in the span should commute with the image of rho.
> ForAll(G, g -> ForAll(cent_basis, M -> Image(rho, g)*M = M*Image(rho,g)));
true

18

RepnDecomp 19

6.2 Using the centralizer for computations

6.2.1 ClassSumCentralizer

▷ ClassSumCentralizer(rho, class, cent_basis) (function)

Returns: ∑s∈tG ρ(s), where t is a representative of the conjugacy class class of G.
We require that rho is unitary. Uses the given orthonormal basis (with respect to the inner product

⟨A,B⟩= Trace(AB∗)) for the centralizer ring of rho to calculate the sum of the conjugacy class class
quickly, i.e. without summing over the class.

NOTE: Orthonormality of cent_basis and unitarity of rho are checked. See
ClassSumCentralizerNC (6.2.2) for a version of this function without checks. The checks are not
very expensive, so it is recommended you use the function with checks.

Example
gap> # Now we have a basis for the centralizer, we can sum a conjugacy class
> # of G.
> class := List(ConjugacyClasses(G)[3]);;
gap> # We can do the computation naively, with no centralizer basis given:
> sum1 := ClassSumCentralizer(rho, class, fail);;
gap> # Before summing with th centralizer basis given, we need to
> # orthonormalize it. It’s already orthogonal, but not normal:
> orth_basis := OrthonormalBasis@RepnDecomp(cent_basis);;
gap> IsOrthonormalSet(orth_basis, InnerProduct@RepnDecomp);
true
gap> # And with the centralizer given, should be more efficient in certain
> # cases (small degree, low multiplicities, but very large group)
> sum2 := ClassSumCentralizer(rho, class, orth_basis);;
gap> # Should be the same:
> sum1 = sum2;
true

6.2.2 ClassSumCentralizerNC

▷ ClassSumCentralizerNC(rho, class, cent_basis) (function)

The same as ClassSumCentralizer (6.2.1), but does not check the basis for orthonormality or
the representation for unitarity.

Example
gap> # The very same as the above, but with no checks on orthonormality.
> sum3 := ClassSumCentralizerNC(rho, class, orth_basis);;
gap> sum1 = sum3;
true

Index

AreRepsIsomorphic, 6

BlockDiagonalBasisOfRepresentation, 13
BlockDiagonalRepresentation, 13

CanonicalDecomposition, 15
CentralizerBlocksOfRepresentation, 18
CentralizerOfRepresentation, 18
CharacterOfTensorProductOf-

Representations, 11
ClassSumCentralizer, 19
ClassSumCentralizerNC, 19
ComposeHomFunction, 11

DegreeOfRepresentation, 12
DirectSumOfRepresentations, 12

GroupSumBSGS, 10

IrreducibleDecomposition, 15
IrreducibleDecompositionCollected, 16
IrreducibleDecompositionDixon, 9
IsFiniteGroupLinearRepresentation

for IsGroupHomomorphism, 10
IsFiniteGroupPermutationRepresentation

for IsGroupHomomorphism, 10
IsLinearRepresentationIsomorphism, 7
IsOrthonormalSet, 12
IsTensorProductKroneckerRep

for IsPositionalObjectRep, 11
IsTensorProductOfMatricesObj

for IsMultiplicativeElementWithInverse, 11
IsTensorProductPairRep

for IsPositionalObjectRep, 11
IsUnitaryRepresentation, 9

LDLDecomposition, 9
LinearRepresentationIsomorphism, 5
LinearRepresentationIsomorphismSlow, 6

PermToLinearRep, 12

REPN_ComputeUsingMyMethod
for IsGroupHomomorphism, 13

REPN_ComputeUsingMyMethodCanonical
for IsGroupHomomorphism, 14

REPN_ComputeUsingSerre
for IsGroupHomomorphism, 16

TensorProductOfMatrices, 11
TensorProductRepLists, 12

UnitaryRepresentation, 8

20

	Introduction
	Getting started with RepnDecomp

	Isomorphisms between representations
	Finding explicit isomorphisms
	Testing isomorphisms

	Algorithms for unitary representations
	Unitarising representations
	Decomposing unitary representations

	Miscellaneous useful functions
	Predicates for representations
	Efficient summing over groups
	Space-efficient representation of tensors of matrices
	Matrices and homomorphisms
	Representation theoretic functions

	Computing decompositions of representations
	Block diagonalizing
	Algorithms due to the authors
	Algorithms due to Serre

	Centralizer (commutant) rings
	Finding a basis for the centralizer
	Using the centralizer for computations

	Index

