Copyright | (c) The University of Glasgow 2001 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | libraries@haskell.org |
Stability | provisional |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
Data.Complex
Description
Complex numbers.
Synopsis
- data Complex a = !a :+ !a
- realPart :: Complex a -> a
- imagPart :: Complex a -> a
- mkPolar :: Floating a => a -> a -> Complex a
- cis :: Floating a => a -> Complex a
- polar :: RealFloat a => Complex a -> (a, a)
- magnitude :: RealFloat a => Complex a -> a
- phase :: RealFloat a => Complex a -> a
- conjugate :: Num a => Complex a -> Complex a
Rectangular form
Complex numbers are an algebraic type.
For a complex number z
,
is a number with the magnitude of abs
zz
,
but oriented in the positive real direction, whereas
has the phase of signum
zz
, but unit magnitude.
The Foldable
and Traversable
instances traverse the real part first.
Constructors
!a :+ !a infix 6 | forms a complex number from its real and imaginary rectangular components. |
Instances
Monad Complex # | Since: base-4.9.0.0 |
Functor Complex # | |
Applicative Complex # | Since: base-4.9.0.0 |
Foldable Complex # | |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Traversable Complex # | |
Eq a => Eq (Complex a) # | |
RealFloat a => Floating (Complex a) # | Since: base-2.1 |
Defined in Data.Complex Methods exp :: Complex a -> Complex a # log :: Complex a -> Complex a # sqrt :: Complex a -> Complex a # (**) :: Complex a -> Complex a -> Complex a # logBase :: Complex a -> Complex a -> Complex a # sin :: Complex a -> Complex a # cos :: Complex a -> Complex a # tan :: Complex a -> Complex a # asin :: Complex a -> Complex a # acos :: Complex a -> Complex a # atan :: Complex a -> Complex a # sinh :: Complex a -> Complex a # cosh :: Complex a -> Complex a # tanh :: Complex a -> Complex a # asinh :: Complex a -> Complex a # acosh :: Complex a -> Complex a # atanh :: Complex a -> Complex a # log1p :: Complex a -> Complex a # expm1 :: Complex a -> Complex a # | |
RealFloat a => Fractional (Complex a) # | Since: base-2.1 |
Data a => Data (Complex a) # | |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
RealFloat a => Num (Complex a) # | Since: base-2.1 |
Read a => Read (Complex a) # | |
Show a => Show (Complex a) # | |
Generic (Complex a) # | |
Storable a => Storable (Complex a) # | Since: base-4.8.0.0 |
Defined in Data.Complex | |
Generic1 Complex # | |
type Rep (Complex a) # | |
Defined in Data.Complex type Rep (Complex a) = D1 (MetaData "Complex" "Data.Complex" "base" False) (C1 (MetaCons ":+" (InfixI NotAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 a) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 a))) | |
type Rep1 Complex # | |
Defined in Data.Complex type Rep1 Complex = D1 (MetaData "Complex" "Data.Complex" "base" False) (C1 (MetaCons ":+" (InfixI NotAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) Par1 :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) Par1)) |
Polar form
mkPolar :: Floating a => a -> a -> Complex a #
Form a complex number from polar components of magnitude and phase.