{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}
module Data.List.Unicode
( (⧺)
, (∈), (∋), (∉), (∌)
, (∪), (∖), (∆), (∩)
, (‼)
, 𝜀
) where
import Prelude ( Int )
import Data.Bool ( Bool )
import Data.Eq ( Eq )
import Data.Function ( flip )
import Data.List ( (++), elem, notElem, union, (\\), intersect, (!!) )
infix 4 ∈
infix 4 ∋
infix 4 ∉
infix 4 ∌
infixr 5 ⧺
infixl 6 ∪
infixr 6 ∩
infixl 9 ∖
infixl 9 ∆
infixl 9 ‼
(⧺) ∷ [α] → [α] → [α]
⧺ :: forall α. [α] -> [α] -> [α]
(⧺) = [α] -> [α] -> [α]
forall α. [α] -> [α] -> [α]
(++)
{-# INLINE (⧺) #-}
(∈) ∷ Eq α ⇒ α → [α] → Bool
∈ :: forall α. Eq α => α -> [α] -> Bool
(∈) = α -> [α] -> Bool
forall α. Eq α => α -> [α] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem
{-# INLINE (∈) #-}
(∋) ∷ Eq α ⇒ [α] → α → Bool
∋ :: forall α. Eq α => [α] -> α -> Bool
(∋) = (α -> [α] -> Bool) -> [α] -> α -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip α -> [α] -> Bool
forall α. Eq α => α -> [α] -> Bool
(∈)
{-# INLINE (∋) #-}
(∉) ∷ Eq α ⇒ α → [α] → Bool
∉ :: forall α. Eq α => α -> [α] -> Bool
(∉) = α -> [α] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
notElem
{-# INLINE (∉) #-}
(∌) ∷ Eq α ⇒ [α] → α → Bool
∌ :: forall α. Eq α => [α] -> α -> Bool
(∌) = (α -> [α] -> Bool) -> [α] -> α -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip α -> [α] -> Bool
forall α. Eq α => α -> [α] -> Bool
(∉)
{-# INLINE (∌) #-}
(∪) ∷ Eq α ⇒ [α] → [α] → [α]
∪ :: forall α. Eq α => [α] -> [α] -> [α]
(∪) = [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
union
{-# INLINE (∪) #-}
(∖) ∷ Eq α ⇒ [α] → [α] → [α]
∖ :: forall α. Eq α => [α] -> [α] -> [α]
(∖) = [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
(\\)
{-# INLINE (∖) #-}
(∆) ∷ Eq α ⇒ [α] → [α] → [α]
[α]
a ∆ :: forall α. Eq α => [α] -> [α] -> [α]
∆ [α]
b = ([α]
a [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
∖ [α]
b) [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
∪ ([α]
b [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
∖ [α]
a)
{-# INLINE (∆) #-}
(∩) ∷ Eq α ⇒ [α] → [α] → [α]
∩ :: forall α. Eq α => [α] -> [α] -> [α]
(∩) = [α] -> [α] -> [α]
forall α. Eq α => [α] -> [α] -> [α]
intersect
{-# INLINE (∩) #-}
(‼) ∷ [α] → Int → α
‼ :: forall α. [α] -> Int -> α
(‼) = [α] -> Int -> α
forall a. HasCallStack => [a] -> Int -> a
(!!)
{-# INLINE (‼) #-}
𝜀 ∷ [a]
𝜀 :: forall a. [a]
𝜀 = []