49 std::vector<double> StepSize;
50 std::vector<double> ErrorNorm;
51 const int nTimeStepSizes = 7;
54 Teuchos::RCP<const Teuchos::Comm<int> > comm =
55 Teuchos::DefaultComm<int>::getComm();
56 Teuchos::RCP<Teuchos::FancyOStream> my_out =
57 Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
58 my_out->setProcRankAndSize(comm->getRank(), comm->getSize());
59 my_out->setOutputToRootOnly(0);
60 for (
int n=0; n<nTimeStepSizes; n++) {
63 RCP<ParameterList> pList =
64 getParametersFromXmlFile(
"Tempus_BackwardEuler_SinCos_ASA.xml");
68 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
69 RCP<SinCosModel<double> > model =
70 Teuchos::rcp(
new SinCosModel<double>(scm_pl));
71 RCP<SinCosModelAdjoint<double> > adjoint_model =
72 Teuchos::rcp(
new SinCosModelAdjoint<double>(scm_pl));
77 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
78 ParameterList& sens_pl = pl->sublist(
"Sensitivities");
79 sens_pl.set(
"Mass Matrix Is Identity",
false);
80 ParameterList& interp_pl =
81 pl->sublist(
"Default Integrator").sublist(
"Solution History").sublist(
"Interpolator");
82 interp_pl.set(
"Interpolator Type",
"Lagrange");
83 interp_pl.set(
"Order", 0);
86 pl->sublist(
"Default Stepper").set(
"Use FSAL",
false);
90 pl->sublist(
"Default Stepper")
91 .set(
"Initial Condition Consistency Check",
false);
94 pl->sublist(
"Default Integrator")
95 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
96 RCP<Tempus::IntegratorAdjointSensitivity<double> > integrator =
97 Tempus::createIntegratorAdjointSensitivity<double>(pl, model, adjoint_model);
98 order = integrator->getStepper()->getOrder();
101 double t0 = pl->sublist(
"Default Integrator")
102 .sublist(
"Time Step Control").get<
double>(
"Initial Time");
103 RCP<const Thyra::VectorBase<double> > x0 =
104 model->getExactSolution(t0).get_x();
105 const int num_param = model->get_p_space(0)->dim();
106 RCP<Thyra::MultiVectorBase<double> > DxDp0 =
107 Thyra::createMembers(model->get_x_space(), num_param);
108 for (
int i=0; i<num_param; ++i)
109 Thyra::assign(DxDp0->col(i).ptr(),
110 *(model->getExactSensSolution(i, t0).get_x()));
111 integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
112 DxDp0, Teuchos::null, Teuchos::null);
115 bool integratorStatus = integrator->advanceTime();
116 TEST_ASSERT(integratorStatus)
119 double time = integrator->getTime();
120 double timeFinal =pl->sublist(
"Default Integrator")
121 .sublist(
"Time Step Control").get<
double>(
"Final Time");
122 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
127 RCP<const Thyra::VectorBase<double> > x = integrator->getX();
128 RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
129 RCP<Thyra::MultiVectorBase<double> > DxDp =
130 Thyra::createMembers(model->get_x_space(), num_param);
132 Thyra::ConstDetachedMultiVectorView<double> dgdp_view(*DgDp);
133 Thyra::DetachedMultiVectorView<double> dxdp_view(*DxDp);
134 const int num_g = DgDp->domain()->dim();
135 for (
int i=0; i<num_g; ++i)
136 for (
int j=0; j<num_param; ++j)
137 dxdp_view(i,j) = dgdp_view(j,i);
139 RCP<const Thyra::VectorBase<double> > x_exact =
140 model->getExactSolution(time).get_x();
141 RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
142 Thyra::createMembers(model->get_x_space(), num_param);
143 for (
int i=0; i<num_param; ++i)
144 Thyra::assign(DxDp_exact->col(i).ptr(),
145 *(model->getExactSensSolution(i, time).get_x()));
148 if (comm->getRank() == 0 && n == nTimeStepSizes-1) {
149 typedef Thyra::DefaultProductVector<double> DPV;
150 typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
152 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens.dat");
153 RCP<const SolutionHistory<double> > solutionHistory =
154 integrator->getSolutionHistory();
155 for (
int i=0; i<solutionHistory->getNumStates(); i++) {
156 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
157 const double time_i = solutionState->getTime();
158 RCP<const DPV> x_prod_plot =
159 Teuchos::rcp_dynamic_cast<const DPV>(solutionState->getX());
160 RCP<const Thyra::VectorBase<double> > x_plot =
161 x_prod_plot->getVectorBlock(0);
162 RCP<const DMVPV > adjoint_prod_plot =
163 Teuchos::rcp_dynamic_cast<const DMVPV>(x_prod_plot->getVectorBlock(1));
164 RCP<const Thyra::MultiVectorBase<double> > adjoint_plot =
165 adjoint_prod_plot->getMultiVector();
166 RCP<const Thyra::VectorBase<double> > x_exact_plot =
167 model->getExactSolution(time_i).get_x();
168 ftmp << std::fixed << std::setprecision(7)
170 << std::setw(11) << get_ele(*(x_plot), 0)
171 << std::setw(11) << get_ele(*(x_plot), 1)
172 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
173 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
174 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
175 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
176 << std::setw(11) << get_ele(*(x_exact_plot), 0)
177 << std::setw(11) << get_ele(*(x_exact_plot), 1)
184 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
185 RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
186 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
187 Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
188 StepSize.push_back(dt);
189 double L2norm = Thyra::norm_2(*xdiff);
191 Teuchos::Array<double> L2norm_DxDp(num_param);
192 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
193 for (
int i=0; i<num_param; ++i)
194 L2norm += L2norm_DxDp[i]*L2norm_DxDp[i];
195 L2norm = std::sqrt(L2norm);
196 ErrorNorm.push_back(L2norm);
204 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
205 *my_out <<
" Stepper = BackwardEuler" << std::endl;
206 *my_out <<
" =========================" << std::endl;
207 *my_out <<
" Expected order: " << order << std::endl;
208 *my_out <<
" Observed order: " << slope << std::endl;
209 *my_out <<
" =========================" << std::endl;
210 TEST_FLOATING_EQUALITY( slope, order, 0.015 );
211 TEST_FLOATING_EQUALITY( ErrorNorm[0], 0.142525, 1.0e-4 );
213 if (comm->getRank() == 0) {
214 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens-Error.dat");
215 double error0 = 0.8*ErrorNorm[0];
216 for (
int n=0; n<nTimeStepSizes; n++) {
217 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
218 << error0*(StepSize[n]/StepSize[0]) << std::endl;