ROL
Public Member Functions | Private Attributes | List of all members
L2VectorDual< Real > Class Template Reference

#include <test_04.hpp>

+ Inheritance diagram for L2VectorDual< Real >:

Public Member Functions

 L2VectorDual (const ROL::Ptr< std::vector< Real > > &vec, const ROL::Ptr< BurgersFEM< Real > > &fem)
 
Real dot (const ROL::Vector< Real > &x) const override
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const override
 Clone to make a new (uninitialized) vector.
 
const ROL::Vector< Real > & dual () const override
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
 L2VectorDual (const ROL::Ptr< std::vector< Real > > &vec, const ROL::Ptr< BurgersFEM< Real > > &fem)
 
void set (const ROL::Vector< Real > &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Real > > getVector () const
 
ROL::Ptr< std::vector< Real > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
 L2VectorDual (const ROL::Ptr< std::vector< Real > > &vec, const ROL::Ptr< BurgersFEM< Real > > &fem)
 
void set (const ROL::Vector< Real > &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Real > > getVector () const
 
ROL::Ptr< std::vector< Real > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
 L2VectorDual (const ROL::Ptr< std::vector< Real > > &vec, const ROL::Ptr< BurgersFEM< Real > > &fem)
 
void set (const ROL::Vector< Real > &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
ROL::Ptr< const std::vector< Real > > getVector () const
 
ROL::Ptr< std::vector< Real > > getVector ()
 
ROL::Ptr< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
Real apply (const ROL::Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
 L2VectorDual (const ROL::Ptr< std::vector< Real > > &vec, const ROL::Ptr< BurgersFEM< Real > > &fem)
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
ROL::Ptr< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector.
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
- Public Member Functions inherited from ROL::StdVector< Real, Element >
 StdVector (const Ptr< std::vector< Element > > &std_vec)
 
 StdVector (const int dim, const Element val=0.0)
 
 StdVector (std::initializer_list< Element > ilist)
 
Real & operator[] (int i)
 
const Real & operator[] (int i) const
 
void set (const Vector< Real > &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void axpy (const Real alpha, const Vector< Real > &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
Ptr< const std::vector< Element > > getVector () const
 
Ptr< std::vector< Element > > getVector ()
 
Ptr< Vector< Real > > basis (const int i) const
 Return i-th basis vector.
 
int dimension () const
 Return dimension of the vector space.
 
void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector< Real > &x)
 
Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).
 
void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u].
 
virtual void print (std::ostream &outStream) const
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void zero ()
 Set to zero vector.
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods.
 

Private Attributes

ROL::Ptr< BurgersFEM< Real > > fem_
 
ROL::Ptr< L2VectorPrimal< Real > > dual_vec_
 
bool isDualInitialized_
 
ROL::Ptr< std::vector< Real > > vec_
 
ROL::Ptr< L2VectorPrimal< Real > > prim_vec_
 
bool isPrimalInitialized_
 

Detailed Description

template<class Real>
class L2VectorDual< Real >

Definition at line 568 of file example_08.hpp.

Constructor & Destructor Documentation

◆ L2VectorDual() [1/5]

template<class Real >
L2VectorDual< Real >::L2VectorDual ( const ROL::Ptr< std::vector< Real > > & vec,
const ROL::Ptr< BurgersFEM< Real > > & fem )
inline

Definition at line 580 of file test_04.hpp.

◆ L2VectorDual() [2/5]

template<class Real >
L2VectorDual< Real >::L2VectorDual ( const ROL::Ptr< std::vector< Real > > & vec,
const ROL::Ptr< BurgersFEM< Real > > & fem )
inline

Definition at line 621 of file example_04.hpp.

◆ L2VectorDual() [3/5]

template<class Real >
L2VectorDual< Real >::L2VectorDual ( const ROL::Ptr< std::vector< Real > > & vec,
const ROL::Ptr< BurgersFEM< Real > > & fem )
inline

Definition at line 625 of file example_06.hpp.

◆ L2VectorDual() [4/5]

template<class Real >
L2VectorDual< Real >::L2VectorDual ( const ROL::Ptr< std::vector< Real > > & vec,
const ROL::Ptr< BurgersFEM< Real > > & fem )
inline

Definition at line 629 of file example_07.hpp.

◆ L2VectorDual() [5/5]

template<class Real >
L2VectorDual< Real >::L2VectorDual ( const ROL::Ptr< std::vector< Real > > & vec,
const ROL::Ptr< BurgersFEM< Real > > & fem )
inline

Definition at line 575 of file example_08.hpp.

Member Function Documentation

◆ dot() [1/5]

template<class Real >
Real L2VectorDual< Real >::dot ( const ROL::Vector< Real > & x) const
inlineoverridevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 585 of file test_04.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::getVector(), and ROL::StdVector< Real, Element >::getVector().

Referenced by L2VectorDual< Real >::norm().

◆ clone() [1/5]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::clone ( ) const
inlineoverridevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 599 of file test_04.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, and ROL::StdVector< Real, Element >::getVector().

◆ dual() [1/5]

template<class Real >
const ROL::Vector< Real > & L2VectorDual< Real >::dual ( void ) const
inlineoverridevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 605 of file test_04.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::dual_vec_, L2VectorDual< Real >::fem_, ROL::StdVector< Real, Element >::getVector(), and L2VectorDual< Real >::isDualInitialized_.

◆ set() [1/3]

template<class Real >
void L2VectorDual< Real >::set ( const ROL::Vector< Real > & x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

   @param[in]      x     is a vector.

   On return \f$\mathtt{*this} = x\f$.
   Uses #zero and #plus methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 625 of file example_04.hpp.

References L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ plus() [1/3]

template<class Real >
void L2VectorDual< Real >::plus ( const ROL::Vector< Real > & x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 631 of file example_04.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ scale() [1/3]

template<class Real >
void L2VectorDual< Real >::scale ( const Real alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 640 of file example_04.hpp.

References L2VectorDual< Real >::dimension(), and L2VectorDual< Real >::vec_.

◆ dot() [2/5]

template<class Real >
Real L2VectorDual< Real >::dot ( const ROL::Vector< Real > & x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 647 of file example_04.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ norm() [1/3]

template<class Real >
Real L2VectorDual< Real >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 660 of file example_04.hpp.

References L2VectorDual< Real >::dot().

◆ clone() [2/5]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 666 of file example_04.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ getVector() [1/6]

template<class Real >
ROL::Ptr< const std::vector< Real > > L2VectorDual< Real >::getVector ( ) const
inline

◆ getVector() [2/6]

template<class Real >
ROL::Ptr< std::vector< Real > > L2VectorDual< Real >::getVector ( )
inline

Definition at line 674 of file example_04.hpp.

References L2VectorDual< Real >::vec_.

◆ basis() [1/3]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::basis ( const int i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 678 of file example_04.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ dimension() [1/3]

template<class Real >
int L2VectorDual< Real >::dimension ( void ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 685 of file example_04.hpp.

References L2VectorDual< Real >::vec_.

Referenced by L2VectorDual< Real >::clone(), L2VectorDual< Real >::dot(), L2VectorDual< Real >::dot(), L2VectorDual< Real >::dual(), L2VectorDual< Real >::plus(), and L2VectorDual< Real >::scale().

◆ dual() [2/5]

template<class Real >
const ROL::Vector< Real > & L2VectorDual< Real >::dual ( void ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 689 of file example_04.hpp.

References L2VectorDual< Real >::dual_vec_, L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ apply() [1/3]

template<class Real >
Real L2VectorDual< Real >::apply ( const ROL::Vector< Real > & x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 697 of file example_04.hpp.

References L2VectorPrimal< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ set() [2/3]

template<class Real >
void L2VectorDual< Real >::set ( const ROL::Vector< Real > & x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

   @param[in]      x     is a vector.

   On return \f$\mathtt{*this} = x\f$.
   Uses #zero and #plus methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 629 of file example_06.hpp.

References L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ plus() [2/3]

template<class Real >
void L2VectorDual< Real >::plus ( const ROL::Vector< Real > & x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 635 of file example_06.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ scale() [2/3]

template<class Real >
void L2VectorDual< Real >::scale ( const Real alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 644 of file example_06.hpp.

References L2VectorDual< Real >::dimension(), and L2VectorDual< Real >::vec_.

◆ dot() [3/5]

template<class Real >
Real L2VectorDual< Real >::dot ( const ROL::Vector< Real > & x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 651 of file example_06.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ norm() [2/3]

template<class Real >
Real L2VectorDual< Real >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 664 of file example_06.hpp.

References L2VectorDual< Real >::dot().

◆ clone() [3/5]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 670 of file example_06.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ getVector() [3/6]

template<class Real >
ROL::Ptr< const std::vector< Real > > L2VectorDual< Real >::getVector ( ) const
inline

Definition at line 674 of file example_06.hpp.

References L2VectorDual< Real >::vec_.

◆ getVector() [4/6]

template<class Real >
ROL::Ptr< std::vector< Real > > L2VectorDual< Real >::getVector ( )
inline

Definition at line 678 of file example_06.hpp.

References L2VectorDual< Real >::vec_.

◆ basis() [2/3]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::basis ( const int i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 682 of file example_06.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ dimension() [2/3]

template<class Real >
int L2VectorDual< Real >::dimension ( void ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 689 of file example_06.hpp.

References L2VectorDual< Real >::vec_.

◆ dual() [3/5]

template<class Real >
const ROL::Vector< Real > & L2VectorDual< Real >::dual ( void ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 693 of file example_06.hpp.

References L2VectorDual< Real >::dual_vec_, L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ apply() [2/3]

template<class Real >
Real L2VectorDual< Real >::apply ( const ROL::Vector< Real > & x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 701 of file example_06.hpp.

References L2VectorPrimal< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ set() [3/3]

template<class Real >
void L2VectorDual< Real >::set ( const ROL::Vector< Real > & x)
inlinevirtual

Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).

   @param[in]      x     is a vector.

   On return \f$\mathtt{*this} = x\f$.
   Uses #zero and #plus methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 633 of file example_07.hpp.

References L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ plus() [3/3]

template<class Real >
void L2VectorDual< Real >::plus ( const ROL::Vector< Real > & x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 639 of file example_07.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ scale() [3/3]

template<class Real >
void L2VectorDual< Real >::scale ( const Real alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

   @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

   On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 648 of file example_07.hpp.

References L2VectorDual< Real >::dimension(), and L2VectorDual< Real >::vec_.

◆ dot() [4/5]

template<class Real >
Real L2VectorDual< Real >::dot ( const ROL::Vector< Real > & x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 655 of file example_07.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ norm() [3/3]

template<class Real >
Real L2VectorDual< Real >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

   @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

   ---

Implements ROL::Vector< Real >.

Definition at line 668 of file example_07.hpp.

References L2VectorDual< Real >::dot().

◆ clone() [4/5]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 674 of file example_07.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ getVector() [5/6]

template<class Real >
ROL::Ptr< const std::vector< Real > > L2VectorDual< Real >::getVector ( ) const
inline

Definition at line 678 of file example_07.hpp.

References L2VectorDual< Real >::vec_.

◆ getVector() [6/6]

template<class Real >
ROL::Ptr< std::vector< Real > > L2VectorDual< Real >::getVector ( )
inline

Definition at line 682 of file example_07.hpp.

References L2VectorDual< Real >::vec_.

◆ basis() [3/3]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::basis ( const int i) const
inlinevirtual

Return i-th basis vector.

   @param[in] i is the index of the basis function.
   @return A reference-counted pointer to the basis vector with index @b i.

   Overloading the basis is only required if the default gradient implementation
   is used, which computes a finite-difference approximation.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 686 of file example_07.hpp.

References L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ dimension() [3/3]

template<class Real >
int L2VectorDual< Real >::dimension ( void ) const
inlinevirtual

Return dimension of the vector space.

   @return The dimension of the vector space, i.e., the total number of basis vectors.

   Overload if the basis is overloaded.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 693 of file example_07.hpp.

References L2VectorDual< Real >::vec_.

◆ dual() [4/5]

template<class Real >
const ROL::Vector< Real > & L2VectorDual< Real >::dual ( void ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 697 of file example_07.hpp.

References L2VectorDual< Real >::dual_vec_, L2VectorDual< Real >::fem_, and L2VectorDual< Real >::vec_.

◆ apply() [3/3]

template<class Real >
Real L2VectorDual< Real >::apply ( const ROL::Vector< Real > & x) const
inlinevirtual

Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).

Parameters
[in]xis a vector
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Reimplemented from ROL::Vector< Real >.

Definition at line 705 of file example_07.hpp.

References L2VectorPrimal< Real >::getVector(), and L2VectorDual< Real >::vec_.

◆ dot() [5/5]

template<class Real >
Real L2VectorDual< Real >::dot ( const ROL::Vector< Real > & x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 580 of file example_08.hpp.

References L2VectorDual< Real >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::getVector(), and ROL::StdVector< Real, Element >::getVector().

◆ clone() [5/5]

template<class Real >
ROL::Ptr< ROL::Vector< Real > > L2VectorDual< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Reimplemented from ROL::StdVector< Real, Element >.

Definition at line 594 of file example_08.hpp.

References L2VectorDual< Real >::fem_.

◆ dual() [5/5]

template<class Real >
const ROL::Vector< Real > & L2VectorDual< Real >::dual ( void ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 599 of file example_08.hpp.

References ROL::StdVector< Real, Element >::dimension(), L2VectorDual< Real >::fem_, L2VectorDual< Real >::isPrimalInitialized_, and L2VectorDual< Real >::prim_vec_.

Member Data Documentation

◆ fem_

template<class Real >
ROL::Ptr< BurgersFEM< Real > > L2VectorDual< Real >::fem_
private

◆ dual_vec_

template<class Real >
ROL::Ptr< L2VectorPrimal< Real > > L2VectorDual< Real >::dual_vec_
mutableprivate

Definition at line 576 of file test_04.hpp.

Referenced by L2VectorDual< Real >::dual(), and L2VectorDual< Real >::dual().

◆ isDualInitialized_

template<class Real >
bool L2VectorDual< Real >::isDualInitialized_
mutableprivate

Definition at line 577 of file test_04.hpp.

Referenced by L2VectorDual< Real >::dual().

◆ vec_

template<class Real >
ROL::Ptr< std::vector< Real > > L2VectorDual< Real >::vec_
private

◆ prim_vec_

template<class Real >
ROL::Ptr<L2VectorPrimal<Real> > L2VectorDual< Real >::prim_vec_
mutableprivate

Definition at line 571 of file example_08.hpp.

Referenced by L2VectorDual< Real >::dual().

◆ isPrimalInitialized_

template<class Real >
bool L2VectorDual< Real >::isPrimalInitialized_
mutableprivate

Definition at line 572 of file example_08.hpp.

Referenced by L2VectorDual< Real >::dual().


The documentation for this class was generated from the following files: