Sacado Package Browser (Single Doxygen Collection) Version of the Day
Loading...
Searching...
No Matches
fenl_assembly/fenl_functors.hpp
Go to the documentation of this file.
1/*
2//@HEADER
3// ************************************************************************
4//
5// Kokkos: Manycore Performance-Portable Multidimensional Arrays
6// Copyright (2012) Sandia Corporation
7//
8// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9// the U.S. Government retains certain rights in this software.
10//
11// Redistribution and use in source and binary forms, with or without
12// modification, are permitted provided that the following conditions are
13// met:
14//
15// 1. Redistributions of source code must retain the above copyright
16// notice, this list of conditions and the following disclaimer.
17//
18// 2. Redistributions in binary form must reproduce the above copyright
19// notice, this list of conditions and the following disclaimer in the
20// documentation and/or other materials provided with the distribution.
21//
22// 3. Neither the name of the Corporation nor the names of the
23// contributors may be used to endorse or promote products derived from
24// this software without specific prior written permission.
25//
26// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37//
38// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
39//
40// ************************************************************************
41//@HEADER
42*/
43
44#ifndef KOKKOS_EXAMPLE_FENLFUNCTORS_HPP
45#define KOKKOS_EXAMPLE_FENLFUNCTORS_HPP
46
47#include <stdio.h>
48
49#include <iostream>
50#include <fstream>
51#include <iomanip>
52#include <cstdlib>
53#include <cmath>
54#include <limits>
55
56#include <Kokkos_Core.hpp>
57#include <Kokkos_Pair.hpp>
58#include <Kokkos_UnorderedMap.hpp>
59#include <Kokkos_StaticCrsGraph.hpp>
60
61#include <Kokkos_Timer.hpp>
62
63#include <BoxElemFixture.hpp>
64#include <HexElement.hpp>
65
66#include "Sacado.hpp"
67
68//----------------------------------------------------------------------------
69//----------------------------------------------------------------------------
70
71namespace Kokkos {
72namespace Example {
73namespace FENL {
74
75template< typename ValueType , class Space >
76struct CrsMatrix {
77#ifdef KOKKOS_ENABLE_DEPRECATED_CODE // Don't remove this until Kokkos has removed the deprecated code path probably around September 2018
78 typedef Kokkos::StaticCrsGraph< unsigned , Space , void , unsigned > StaticCrsGraphType ;
79#else
80 typedef Kokkos::StaticCrsGraph< unsigned , Space , void , void , unsigned > StaticCrsGraphType ;
81#endif
82 typedef View< ValueType * , Space > coeff_type ;
83
86
87 CrsMatrix() : graph(), coeff() {}
88
89 CrsMatrix( const StaticCrsGraphType & arg_graph )
90 : graph( arg_graph )
91 , coeff( "crs_matrix_coeff" , arg_graph.entries.extent(0) )
92 {}
93};
94
95template< class ElemNodeIdView , class CrsGraphType , unsigned ElemNode >
97public:
98
99 typedef typename ElemNodeIdView::execution_space execution_space ;
100 typedef pair<unsigned,unsigned> key_type ;
101
102 typedef Kokkos::UnorderedMap< key_type, void , execution_space > SetType ;
103 typedef typename CrsGraphType::row_map_type::non_const_type RowMapType ;
104 typedef Kokkos::View< unsigned , execution_space > UnsignedValue ;
105
106 // Static dimensions of 0 generate compiler warnings or errors.
107 typedef Kokkos::View< unsigned*[ElemNode][ElemNode] , execution_space >
109
110 struct TagFillNodeSet {};
115
116private:
117
123
124 const unsigned node_count ;
125 const ElemNodeIdView elem_node_id ;
131
132public:
133
134 CrsGraphType graph ;
136
146
147 NodeNodeGraph( const ElemNodeIdView & arg_elem_node_id ,
148 const unsigned arg_node_count,
149 Times & results
150 )
151 : node_count(arg_node_count)
152 , elem_node_id( arg_elem_node_id )
153 , row_total( "row_total" )
154 , row_count(Kokkos::ViewAllocateWithoutInitializing("row_count") , node_count ) // will deep_copy to 0 inside loop
155 , row_map( "graph_row_map" , node_count + 1 )
156 , node_node_set()
158 , graph()
159 , elem_graph()
160 {
161 //--------------------------------
162 // Guess at capacity required for the map:
163
164 Kokkos::Timer wall_clock ;
165
166 wall_clock.reset();
168
169 // upper bound on the capacity
170 size_t set_capacity = (28ull * node_count) / 2;
171 unsigned failed_insert_count = 0 ;
172
173 do {
174 // Zero the row count to restart the fill
175 Kokkos::deep_copy( row_count , 0u );
176
177 node_node_set = SetType( ( set_capacity += failed_insert_count ) );
178
179 // May be larger that requested:
180 set_capacity = node_node_set.capacity();
181
182 Kokkos::parallel_reduce( Kokkos::RangePolicy<execution_space,TagFillNodeSet>(0,elem_node_id.extent(0))
183 , *this
184 , failed_insert_count );
185
186 } while ( failed_insert_count );
187
188 execution_space().fence();
189 results.ratio = (double)node_node_set.size() / (double)node_node_set.capacity();
190 results.fill_node_set = wall_clock.seconds();
191 //--------------------------------
192
193 wall_clock.reset();
195
196 // Exclusive scan of row_count into row_map
197 // including the final total in the 'node_count + 1' position.
198 // Zero the 'row_count' values.
199 Kokkos::parallel_scan( node_count , *this );
200
201 // Zero the row count for the fill:
202 Kokkos::deep_copy( row_count , 0u );
203
204 unsigned graph_entry_count = 0 ;
205
206 Kokkos::deep_copy( graph_entry_count , row_total );
207
208 // Assign graph's row_map and allocate graph's entries
209 graph.row_map = row_map ;
210 graph.entries = typename CrsGraphType::entries_type( "graph_entries" , graph_entry_count );
211
212 //--------------------------------
213 // Fill graph's entries from the (node,node) set.
214
215 execution_space().fence();
216 results.scan_node_count = wall_clock.seconds();
217
218 wall_clock.reset();
220 Kokkos::parallel_for( node_node_set.capacity() , *this );
221
222 execution_space().fence();
223 results.fill_graph_entries = wall_clock.seconds();
224
225 //--------------------------------
226 // Done with the temporary sets and arrays
227 wall_clock.reset();
229
233 node_node_set.clear();
234
235 //--------------------------------
236
237 Kokkos::parallel_for( node_count , *this );
238
239 execution_space().fence();
240 results.sort_graph_entries = wall_clock.seconds();
241
242 //--------------------------------
243 // Element-to-graph mapping:
244 wall_clock.reset();
246 elem_graph = ElemGraphType("elem_graph", elem_node_id.extent(0) );
247 Kokkos::parallel_for( elem_node_id.extent(0) , *this );
248
249 execution_space().fence();
250 results.fill_element_graph = wall_clock.seconds();
251 }
252
253 //------------------------------------
254 // parallel_for: create map and count row length
255
256 KOKKOS_INLINE_FUNCTION
257 void operator()( const TagFillNodeSet & , unsigned ielem , unsigned & count ) const
258 {
259 // Loop over element's (row_local_node,col_local_node) pairs:
260 for ( unsigned row_local_node = 0 ; row_local_node < elem_node_id.extent(1) ; ++row_local_node ) {
261
262 const unsigned row_node = elem_node_id( ielem , row_local_node );
263
264 for ( unsigned col_local_node = row_local_node ; col_local_node < elem_node_id.extent(1) ; ++col_local_node ) {
265
266 const unsigned col_node = elem_node_id( ielem , col_local_node );
267
268 // If either node is locally owned then insert the pair into the unordered map:
269
270 if ( row_node < row_count.extent(0) || col_node < row_count.extent(0) ) {
271
272 const key_type key = (row_node < col_node) ? make_pair( row_node, col_node ) : make_pair( col_node, row_node ) ;
273
274 const typename SetType::insert_result result = node_node_set.insert( key );
275
276 // A successfull insert: the first time this pair was added
277 if ( result.success() ) {
278
279 // If row node is owned then increment count
280 if ( row_node < row_count.extent(0) ) { atomic_increment( & row_count( row_node ) ); }
281
282 // If column node is owned and not equal to row node then increment count
283 if ( col_node < row_count.extent(0) && col_node != row_node ) { atomic_increment( & row_count( col_node ) ); }
284 }
285 else if ( result.failed() ) {
286 ++count ;
287 }
288 }
289 }
290 }
291 }
292
293 KOKKOS_INLINE_FUNCTION
294 void fill_graph_entries( const unsigned iset ) const
295 {
296 typedef typename std::remove_reference< decltype( row_count(0) ) >::type atomic_incr_type;
297
298 if ( node_node_set.valid_at(iset) ) {
299 // Add each entry to the graph entries.
300
301 const key_type key = node_node_set.key_at(iset) ;
302 const unsigned row_node = key.first ;
303 const unsigned col_node = key.second ;
304
305 if ( row_node < row_count.extent(0) ) {
306 const unsigned offset = graph.row_map( row_node ) + atomic_fetch_add( & row_count( row_node ) , atomic_incr_type(1) );
307 graph.entries( offset ) = col_node ;
308 }
309
310 if ( col_node < row_count.extent(0) && col_node != row_node ) {
311 const unsigned offset = graph.row_map( col_node ) + atomic_fetch_add( & row_count( col_node ) , atomic_incr_type(1) );
312 graph.entries( offset ) = row_node ;
313 }
314 }
315 }
316
317 KOKKOS_INLINE_FUNCTION
318 void sort_graph_entries( const unsigned irow ) const
319 {
320 const unsigned row_beg = graph.row_map( irow );
321 const unsigned row_end = graph.row_map( irow + 1 );
322 for ( unsigned i = row_beg + 1 ; i < row_end ; ++i ) {
323 const unsigned col = graph.entries(i);
324 unsigned j = i ;
325 for ( ; row_beg < j && col < graph.entries(j-1) ; --j ) {
326 graph.entries(j) = graph.entries(j-1);
327 }
328 graph.entries(j) = col ;
329 }
330 }
331
332 KOKKOS_INLINE_FUNCTION
333 void fill_elem_graph_map( const unsigned ielem ) const
334 {
335 for ( unsigned row_local_node = 0 ; row_local_node < elem_node_id.extent(1) ; ++row_local_node ) {
336
337 const unsigned row_node = elem_node_id( ielem , row_local_node );
338
339 for ( unsigned col_local_node = 0 ; col_local_node < elem_node_id.extent(1) ; ++col_local_node ) {
340
341 const unsigned col_node = elem_node_id( ielem , col_local_node );
342
343 unsigned entry = ~0u ;
344
345 if ( row_node + 1 < graph.row_map.extent(0) ) {
346
347 const unsigned entry_end = graph.row_map( row_node + 1 );
348
349 entry = graph.row_map( row_node );
350
351 for ( ; entry < entry_end && graph.entries(entry) != col_node ; ++entry );
352
353 if ( entry == entry_end ) entry = ~0u ;
354 }
355
356 elem_graph( ielem , row_local_node , col_local_node ) = entry ;
357 }
358 }
359 }
360
361 KOKKOS_INLINE_FUNCTION
362 void operator()( const unsigned iwork ) const
363 {
364/*
365 if ( phase == FILL_NODE_SET ) {
366 operator()( TagFillNodeSet() , iwork );
367 }
368 else */
369 if ( phase == FILL_GRAPH_ENTRIES ) {
370 fill_graph_entries( iwork );
371 }
372 else if ( phase == SORT_GRAPH_ENTRIES ) {
373 sort_graph_entries( iwork );
374 }
375 else if ( phase == FILL_ELEMENT_GRAPH ) {
376 fill_elem_graph_map( iwork );
377 }
378 }
379
380 //------------------------------------
381 // parallel_scan: row offsets
382
383 typedef unsigned value_type ;
384
385 KOKKOS_INLINE_FUNCTION
386 void operator()( const unsigned irow , unsigned & update , const bool final ) const
387 {
388 // exclusive scan
389 if ( final ) { row_map( irow ) = update ; }
390
391 update += row_count( irow );
392
393 if ( final ) {
394 if ( irow + 1 == row_count.extent(0) ) {
395 row_map( irow + 1 ) = update ;
396 row_total() = update ;
397 }
398 }
399 }
400
401 // For the reduce phase:
402 KOKKOS_INLINE_FUNCTION
403 void init( const TagFillNodeSet & , unsigned & update ) const { update = 0 ; }
404
405 KOKKOS_INLINE_FUNCTION
406 void join( const TagFillNodeSet &
407 , unsigned & update
408 , const unsigned & input ) const { update += input ; }
409
410 // For the scan phase::
411 KOKKOS_INLINE_FUNCTION
412 void init( unsigned & update ) const { update = 0 ; }
413
414 KOKKOS_INLINE_FUNCTION
415 void join( unsigned & update
416 , const unsigned & input ) const { update += input ; }
417
418 //------------------------------------
419};
420
421} /* namespace FENL */
422} /* namespace Example */
423} /* namespace Kokkos */
424
425//----------------------------------------------------------------------------
426//----------------------------------------------------------------------------
427
428namespace Kokkos {
429namespace Example {
430namespace FENL {
431
432template< class ExecutionSpace , BoxElemPart::ElemOrder Order ,
433 class CoordinateMap , typename ScalarType >
435{
436public:
437
440
441 //------------------------------------
442
443 typedef ExecutionSpace execution_space ;
444 typedef ScalarType scalar_type ;
445
448 typedef Kokkos::View< scalar_type* , Kokkos::LayoutLeft, execution_space > vector_type ;
449
450 //------------------------------------
451
453 static const unsigned TensorDim = SpatialDim * SpatialDim ;
457
458 //------------------------------------
459
462 typedef Kokkos::View< scalar_type*[FunctionCount][FunctionCount] , execution_space > elem_matrices_type ;
463 typedef Kokkos::View< scalar_type*[FunctionCount] , execution_space > elem_vectors_type ;
464
466
467 //------------------------------------
468
469
470 //------------------------------------
471 // Computational data:
472
482
484 : elem_data()
486 , node_coords( rhs.node_coords )
487 , elem_graph( rhs.elem_graph )
490 , solution( rhs.solution )
491 , residual( rhs.residual )
492 , jacobian( rhs.jacobian )
493 {}
494
496 const vector_type & arg_solution ,
497 const elem_graph_type & arg_elem_graph ,
498 const sparse_matrix_type & arg_jacobian ,
499 const vector_type & arg_residual )
500 : elem_data()
501 , elem_node_ids( arg_mesh.elem_node() )
502 , node_coords( arg_mesh.node_coord() )
503 , elem_graph( arg_elem_graph )
506 , solution( arg_solution )
507 , residual( arg_residual )
508 , jacobian( arg_jacobian )
509 {}
510
511 //------------------------------------
512
513 KOKKOS_INLINE_FUNCTION
515 const double grad[][ FunctionCount ] , // Gradient of bases master element
516 const double x[] ,
517 const double y[] ,
518 const double z[] ,
519 double dpsidx[] ,
520 double dpsidy[] ,
521 double dpsidz[] ) const
522 {
523 enum { j11 = 0 , j12 = 1 , j13 = 2 ,
524 j21 = 3 , j22 = 4 , j23 = 5 ,
525 j31 = 6 , j32 = 7 , j33 = 8 };
526
527 // Jacobian accumulation:
528
529 double J[ TensorDim ] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
530
531 for( unsigned i = 0; i < FunctionCount ; ++i ) {
532 const double x1 = x[i] ;
533 const double x2 = y[i] ;
534 const double x3 = z[i] ;
535
536 const double g1 = grad[0][i] ;
537 const double g2 = grad[1][i] ;
538 const double g3 = grad[2][i] ;
539
540 J[j11] += g1 * x1 ;
541 J[j12] += g1 * x2 ;
542 J[j13] += g1 * x3 ;
543
544 J[j21] += g2 * x1 ;
545 J[j22] += g2 * x2 ;
546 J[j23] += g2 * x3 ;
547
548 J[j31] += g3 * x1 ;
549 J[j32] += g3 * x2 ;
550 J[j33] += g3 * x3 ;
551 }
552
553 // Inverse jacobian:
554
555 double invJ[ TensorDim ] = {
556 static_cast<double>( J[j22] * J[j33] - J[j23] * J[j32] ) ,
557 static_cast<double>( J[j13] * J[j32] - J[j12] * J[j33] ) ,
558 static_cast<double>( J[j12] * J[j23] - J[j13] * J[j22] ) ,
559
560 static_cast<double>( J[j23] * J[j31] - J[j21] * J[j33] ) ,
561 static_cast<double>( J[j11] * J[j33] - J[j13] * J[j31] ) ,
562 static_cast<double>( J[j13] * J[j21] - J[j11] * J[j23] ) ,
563
564 static_cast<double>( J[j21] * J[j32] - J[j22] * J[j31] ) ,
565 static_cast<double>( J[j12] * J[j31] - J[j11] * J[j32] ) ,
566 static_cast<double>( J[j11] * J[j22] - J[j12] * J[j21] ) };
567
568 const double detJ = J[j11] * invJ[j11] +
569 J[j21] * invJ[j12] +
570 J[j31] * invJ[j13] ;
571
572 const double detJinv = 1.0 / detJ ;
573
574 for ( unsigned i = 0 ; i < TensorDim ; ++i ) { invJ[i] *= detJinv ; }
575
576 // Transform gradients:
577
578 for( unsigned i = 0; i < FunctionCount ; ++i ) {
579 const double g0 = grad[0][i];
580 const double g1 = grad[1][i];
581 const double g2 = grad[2][i];
582
583 dpsidx[i] = g0 * invJ[j11] + g1 * invJ[j12] + g2 * invJ[j13];
584 dpsidy[i] = g0 * invJ[j21] + g1 * invJ[j22] + g2 * invJ[j23];
585 dpsidz[i] = g0 * invJ[j31] + g1 * invJ[j32] + g2 * invJ[j33];
586 }
587
588 return detJ ;
589 }
590
591};
592
599
600template< class FiniteElementMeshType ,
601 class SparseMatrixType ,
603 >
605
606template< class ExecutionSpace , BoxElemPart::ElemOrder Order ,
607 class CoordinateMap , typename ScalarType >
609 < Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
610 CrsMatrix< ScalarType , ExecutionSpace > ,
611 Analytic > :
612 public ElementComputationBase<ExecutionSpace, Order, CoordinateMap,
613 ScalarType> {
614public:
615
616 typedef ElementComputationBase<ExecutionSpace, Order, CoordinateMap,
617 ScalarType> base_type;
618
621
622 static const unsigned FunctionCount = base_type::FunctionCount;
623 static const unsigned IntegrationCount = base_type::IntegrationCount;
624 static const unsigned ElemNodeCount = base_type::ElemNodeCount;
625
627
629 const typename base_type::mesh_type & arg_mesh ,
630 const typename base_type::vector_type & arg_solution ,
631 const typename base_type::elem_graph_type & arg_elem_graph ,
632 const typename base_type::sparse_matrix_type & arg_jacobian ,
633 const typename base_type::vector_type & arg_residual ) :
634 base_type(arg_mesh, arg_solution, arg_elem_graph,
635 arg_jacobian, arg_residual) {}
636
637 //------------------------------------
638
639 void apply() const
640 {
641 const size_t nelem = this->elem_node_ids.extent(0);
642 parallel_for( nelem , *this );
643 }
644
645 KOKKOS_INLINE_FUNCTION
646 void gatherSolution(const unsigned ielem,
648 unsigned node_index[],
649 double x[], double y[], double z[],
650 scalar_type res[],
651 scalar_type mat[][FunctionCount]) const
652 {
653 for ( unsigned i = 0 ; i < ElemNodeCount ; ++i ) {
654 const unsigned ni = this->elem_node_ids( ielem , i );
655
656 node_index[i] = ni ;
657
658 x[i] = this->node_coords( ni , 0 );
659 y[i] = this->node_coords( ni , 1 );
660 z[i] = this->node_coords( ni , 2 );
661
662 val[i] = this->solution( ni ) ;
663 res[i] = 0 ;
664
665 for( unsigned j = 0; j < FunctionCount ; j++){
666 mat[i][j] = 0 ;
667 }
668 }
669 }
670
671 KOKKOS_INLINE_FUNCTION
672 void scatterResidual(const unsigned ielem,
673 const unsigned node_index[],
674 const scalar_type res[],
675 const scalar_type mat[][FunctionCount]) const
676 {
677 for( unsigned i = 0 ; i < FunctionCount ; i++ ) {
678 const unsigned row = node_index[i] ;
679 if ( row < this->residual.extent(0) ) {
680 atomic_add( & this->residual( row ) , res[i] );
681
682 for( unsigned j = 0 ; j < FunctionCount ; j++ ) {
683 const unsigned entry = this->elem_graph( ielem , i , j );
684 if ( entry != ~0u ) {
685 atomic_add( & this->jacobian.coeff( entry ) , mat[i][j] );
686 }
687 }
688 }
689 }
690 }
691
692 KOKKOS_INLINE_FUNCTION
694 const scalar_type dof_values[] ,
695 const double x[],
696 const double y[],
697 const double z[],
698 scalar_type elem_res[] ,
699 scalar_type elem_mat[][FunctionCount] ) const
700 {
701 double coeff_k = 3.456;
702 double coeff_src = 1.234;
703 double advection[] = { 1.1, 1.2, 1.3 };
704 double dpsidx[ FunctionCount ] ;
705 double dpsidy[ FunctionCount ] ;
706 double dpsidz[ FunctionCount ] ;
707 for ( unsigned i = 0 ; i < IntegrationCount ; ++i ) {
708
709 const double integ_weight = this->elem_data.weights[i];
710 const double* bases_vals = this->elem_data.values[i];
711 const double detJ =
712 this->transform_gradients( this->elem_data.gradients[i] ,
713 x , y , z ,
714 dpsidx , dpsidy , dpsidz );
715 const double detJ_weight = detJ * integ_weight;
716 const double detJ_weight_coeff_k = detJ_weight * coeff_k;
717
718 scalar_type value_at_pt = 0 ;
719 scalar_type gradx_at_pt = 0 ;
720 scalar_type grady_at_pt = 0 ;
721 scalar_type gradz_at_pt = 0 ;
722 for ( unsigned m = 0 ; m < FunctionCount ; m++ ) {
723 value_at_pt += dof_values[m] * bases_vals[m] ;
724 gradx_at_pt += dof_values[m] * dpsidx[m] ;
725 grady_at_pt += dof_values[m] * dpsidy[m] ;
726 gradz_at_pt += dof_values[m] * dpsidz[m] ;
727 }
728
729 const scalar_type source_term =
730 coeff_src * value_at_pt * value_at_pt ;
731 const scalar_type source_deriv =
732 2.0 * coeff_src * value_at_pt ;
733
734 const scalar_type advection_x = advection[0];
735 const scalar_type advection_y = advection[1];
736 const scalar_type advection_z = advection[2];
737
738 const scalar_type advection_term =
739 advection_x*gradx_at_pt +
740 advection_y*grady_at_pt +
741 advection_z*gradz_at_pt ;
742
743 for ( unsigned m = 0; m < FunctionCount; ++m) {
744 scalar_type * const mat = elem_mat[m] ;
745 const double bases_val_m = bases_vals[m] * detJ_weight ;
746 const double dpsidx_m = dpsidx[m] ;
747 const double dpsidy_m = dpsidy[m] ;
748 const double dpsidz_m = dpsidz[m] ;
749
750 elem_res[m] +=
751 detJ_weight_coeff_k * ( dpsidx_m * gradx_at_pt +
752 dpsidy_m * grady_at_pt +
753 dpsidz_m * gradz_at_pt ) +
754 bases_val_m * ( advection_term + source_term ) ;
755
756 for( unsigned n = 0; n < FunctionCount; n++) {
757 const double dpsidx_n = dpsidx[n] ;
758 const double dpsidy_n = dpsidy[n] ;
759 const double dpsidz_n = dpsidz[n] ;
760 mat[n] +=
761 detJ_weight_coeff_k * ( dpsidx_m * dpsidx_n +
762 dpsidy_m * dpsidy_n +
763 dpsidz_m * dpsidz_n ) +
764 bases_val_m * ( advection_x * dpsidx_n +
765 advection_y * dpsidy_n +
766 advection_z * dpsidz_n +
767 source_deriv * bases_vals[n] ) ;
768 }
769 }
770 }
771 }
772
773 KOKKOS_INLINE_FUNCTION
774 void operator()( const unsigned ielem ) const
775 {
776 double x[ FunctionCount ] ;
777 double y[ FunctionCount ] ;
778 double z[ FunctionCount ] ;
779 unsigned node_index[ ElemNodeCount ];
780
781 scalar_type val[ FunctionCount ] ;
782 scalar_type elem_res[ FunctionCount ] ;
783 scalar_type elem_mat[ FunctionCount ][ FunctionCount ] ;
784
785 // Gather nodal coordinates and solution vector:
786 gatherSolution(ielem, val, node_index, x, y, z, elem_res, elem_mat);
787
788 // Compute nodal element residual vector and Jacobian matrix
789 computeElementResidualJacobian( val, x, y, z, elem_res , elem_mat );
790
791 // Scatter nodal element residual and Jacobian in global vector and matrix:
792 scatterResidual( ielem, node_index, elem_res, elem_mat );
793 }
794}; /* ElementComputation */
795
796template< class ExecutionSpace , BoxElemPart::ElemOrder Order ,
797 class CoordinateMap , typename ScalarType >
799 < Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
800 CrsMatrix< ScalarType , ExecutionSpace > ,
801 FadElement > : public ElementComputationBase<ExecutionSpace, Order, CoordinateMap,
802 ScalarType> {
803public:
804
805 typedef ElementComputationBase<ExecutionSpace, Order, CoordinateMap,
806 ScalarType> base_type;
807
810
811 static const unsigned FunctionCount = base_type::FunctionCount;
812 static const unsigned IntegrationCount = base_type::IntegrationCount;
813 static const unsigned ElemNodeCount = base_type::ElemNodeCount;
814
816
818
820 const typename base_type::mesh_type & arg_mesh ,
821 const typename base_type::vector_type & arg_solution ,
822 const typename base_type::elem_graph_type & arg_elem_graph ,
823 const typename base_type::sparse_matrix_type & arg_jacobian ,
824 const typename base_type::vector_type & arg_residual ) :
825 base_type(arg_mesh, arg_solution, arg_elem_graph,
826 arg_jacobian, arg_residual) {}
827
828 //------------------------------------
829
830 void apply() const
831 {
832 const size_t nelem = this->elem_node_ids.extent(0);
833 parallel_for( nelem , *this );
834 }
835
836 KOKKOS_INLINE_FUNCTION
837 void gatherSolution(const unsigned ielem,
839 unsigned node_index[],
840 double x[], double y[], double z[],
841 fad_scalar_type res[]) const
842 {
843 for ( unsigned i = 0 ; i < ElemNodeCount ; ++i ) {
844 const unsigned ni = this->elem_node_ids( ielem , i );
845
846 node_index[i] = ni ;
847
848 x[i] = this->node_coords( ni , 0 );
849 y[i] = this->node_coords( ni , 1 );
850 z[i] = this->node_coords( ni , 2 );
851
852 val[i].val() = this->solution( ni );
853 val[i].diff( i, FunctionCount );
854 }
855 }
856
857 KOKKOS_INLINE_FUNCTION
858 void scatterResidual(const unsigned ielem,
859 const unsigned node_index[],
860 fad_scalar_type res[]) const
861 {
862 for( unsigned i = 0 ; i < FunctionCount ; i++ ) {
863 const unsigned row = node_index[i] ;
864 if ( row < this->residual.extent(0) ) {
865 atomic_add( & this->residual( row ) , res[i].val() );
866
867 for( unsigned j = 0 ; j < FunctionCount ; j++ ) {
868 const unsigned entry = this->elem_graph( ielem , i , j );
869 if ( entry != ~0u ) {
870 atomic_add( & this->jacobian.coeff( entry ) ,
871 res[i].fastAccessDx(j) );
872 }
873 }
874 }
875 }
876 }
877
878 KOKKOS_INLINE_FUNCTION
879 void computeElementResidual(const fad_scalar_type dof_values[] ,
880 const double x[],
881 const double y[],
882 const double z[],
883 fad_scalar_type elem_res[] ) const
884 {
885 double coeff_k = 3.456;
886 double coeff_src = 1.234;
887 double advection[] = { 1.1, 1.2, 1.3 };
888 double dpsidx[ FunctionCount ] ;
889 double dpsidy[ FunctionCount ] ;
890 double dpsidz[ FunctionCount ] ;
891 for ( unsigned i = 0 ; i < IntegrationCount ; ++i ) {
892
893 const double integ_weight = this->elem_data.weights[i];
894 const double* bases_vals = this->elem_data.values[i];
895 const double detJ =
896 this->transform_gradients( this->elem_data.gradients[i] ,
897 x , y , z ,
898 dpsidx , dpsidy , dpsidz );
899 const double detJ_weight = detJ * integ_weight;
900 const double detJ_weight_coeff_k = detJ_weight * coeff_k;
901
902 fad_scalar_type value_at_pt = 0 ;
903 fad_scalar_type gradx_at_pt = 0 ;
904 fad_scalar_type grady_at_pt = 0 ;
905 fad_scalar_type gradz_at_pt = 0 ;
906 for ( unsigned m = 0 ; m < FunctionCount ; m++ ) {
907 value_at_pt += dof_values[m] * bases_vals[m] ;
908 gradx_at_pt += dof_values[m] * dpsidx[m] ;
909 grady_at_pt += dof_values[m] * dpsidy[m] ;
910 gradz_at_pt += dof_values[m] * dpsidz[m] ;
911 }
912
913 const fad_scalar_type source_term =
914 coeff_src * value_at_pt * value_at_pt ;
915
916 const fad_scalar_type advection_term =
917 advection[0]*gradx_at_pt +
918 advection[1]*grady_at_pt +
919 advection[2]*gradz_at_pt;
920
921 for ( unsigned m = 0; m < FunctionCount; ++m) {
922 const double bases_val_m = bases_vals[m] * detJ_weight ;
923 const double dpsidx_m = dpsidx[m] ;
924 const double dpsidy_m = dpsidy[m] ;
925 const double dpsidz_m = dpsidz[m] ;
926
927 elem_res[m] +=
928 detJ_weight_coeff_k * ( dpsidx_m * gradx_at_pt +
929 dpsidy_m * grady_at_pt +
930 dpsidz_m * gradz_at_pt ) +
931 bases_val_m * ( advection_term + source_term ) ;
932 }
933 }
934 }
935
936 KOKKOS_INLINE_FUNCTION
937 void operator()( const unsigned ielem ) const
938 {
939 double x[ FunctionCount ] ;
940 double y[ FunctionCount ] ;
941 double z[ FunctionCount ] ;
942 unsigned node_index[ ElemNodeCount ];
943
944 fad_scalar_type val[ FunctionCount ] ;
945 fad_scalar_type elem_res[ FunctionCount ] ; // this zeros elem_res
946
947 // Gather nodal coordinates and solution vector:
948 gatherSolution( ielem, val, node_index, x, y, z, elem_res );
949
950 // Compute nodal element residual vector:
951 computeElementResidual( val, x, y, z, elem_res );
952
953 // Scatter nodal element residual in global vector:
954 scatterResidual( ielem, node_index, elem_res );
955 }
956}; /* ElementComputation */
957
958template< class ExecutionSpace , BoxElemPart::ElemOrder Order ,
959 class CoordinateMap , typename ScalarType >
961 < Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
962 CrsMatrix< ScalarType , ExecutionSpace > ,
964 public ElementComputation< Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
965 CrsMatrix< ScalarType , ExecutionSpace > ,
966 FadElement > {
967public:
968
972
975
976 static const unsigned FunctionCount = base_type::FunctionCount;
977 static const unsigned IntegrationCount = base_type::IntegrationCount;
978 static const unsigned ElemNodeCount = base_type::ElemNodeCount;
979
981
983
985 const typename base_type::mesh_type & arg_mesh ,
986 const typename base_type::vector_type & arg_solution ,
987 const typename base_type::elem_graph_type & arg_elem_graph ,
988 const typename base_type::sparse_matrix_type & arg_jacobian ,
989 const typename base_type::vector_type & arg_residual ) :
990 base_type(arg_mesh, arg_solution, arg_elem_graph,
991 arg_jacobian, arg_residual) {}
992
993 //------------------------------------
994
995 void apply() const
996 {
997 const size_t nelem = this->elem_node_ids.extent(0);
998 parallel_for( nelem , *this );
999 }
1000
1001 KOKKOS_INLINE_FUNCTION
1002 void gatherSolution(const unsigned ielem,
1003 scalar_type val[],
1004 unsigned node_index[],
1005 double x[], double y[], double z[],
1006 fad_scalar_type res[]) const
1007 {
1008 for ( unsigned i = 0 ; i < ElemNodeCount ; ++i ) {
1009 const unsigned ni = this->elem_node_ids( ielem , i );
1010
1011 node_index[i] = ni ;
1012
1013 x[i] = this->node_coords( ni , 0 );
1014 y[i] = this->node_coords( ni , 1 );
1015 z[i] = this->node_coords( ni , 2 );
1016
1017 val[i] = this->solution( ni );
1018 }
1019 }
1020
1021 KOKKOS_INLINE_FUNCTION
1022 void computeElementResidual(const scalar_type dof_values[] ,
1023 const double x[],
1024 const double y[],
1025 const double z[],
1026 fad_scalar_type elem_res[] ) const
1027 {
1028 double coeff_k = 3.456;
1029 double coeff_src = 1.234;
1030 double advection[] = { 1.1, 1.2, 1.3 };
1031 double dpsidx[ FunctionCount ] ;
1032 double dpsidy[ FunctionCount ] ;
1033 double dpsidz[ FunctionCount ] ;
1034 for ( unsigned i = 0 ; i < IntegrationCount ; ++i ) {
1035
1036 const double integ_weight = this->elem_data.weights[i];
1037 const double* bases_vals = this->elem_data.values[i];
1038 const double detJ =
1039 this->transform_gradients( this->elem_data.gradients[i] ,
1040 x , y , z ,
1041 dpsidx , dpsidy , dpsidz );
1042 const double detJ_weight = detJ * integ_weight;
1043 const double detJ_weight_coeff_k = detJ_weight * coeff_k;
1044
1045 fad_scalar_type value_at_pt(FunctionCount, 0.0, Sacado::NoInitDerivArray) ;
1046 fad_scalar_type gradx_at_pt(FunctionCount, 0.0, Sacado::NoInitDerivArray) ;
1047 fad_scalar_type grady_at_pt(FunctionCount, 0.0, Sacado::NoInitDerivArray) ;
1048 fad_scalar_type gradz_at_pt(FunctionCount, 0.0, Sacado::NoInitDerivArray) ;
1049 for ( unsigned m = 0 ; m < FunctionCount ; m++ ) {
1050 value_at_pt.val() += dof_values[m] * bases_vals[m] ;
1051 value_at_pt.fastAccessDx(m) = bases_vals[m] ;
1052
1053 gradx_at_pt.val() += dof_values[m] * dpsidx[m] ;
1054 gradx_at_pt.fastAccessDx(m) = dpsidx[m] ;
1055
1056 grady_at_pt.val() += dof_values[m] * dpsidy[m] ;
1057 grady_at_pt.fastAccessDx(m) = dpsidy[m] ;
1058
1059 gradz_at_pt.val() += dof_values[m] * dpsidz[m] ;
1060 gradz_at_pt.fastAccessDx(m) = dpsidz[m] ;
1061 }
1062
1063 const fad_scalar_type source_term =
1064 coeff_src * value_at_pt * value_at_pt ;
1065
1066 const fad_scalar_type advection_term =
1067 advection[0]*gradx_at_pt +
1068 advection[1]*grady_at_pt +
1069 advection[2]*gradz_at_pt;
1070
1071 for ( unsigned m = 0; m < FunctionCount; ++m) {
1072 const double bases_val_m = bases_vals[m] * detJ_weight ;
1073 const double dpsidx_m = dpsidx[m] ;
1074 const double dpsidy_m = dpsidy[m] ;
1075 const double dpsidz_m = dpsidz[m] ;
1076
1077 elem_res[m] +=
1078 detJ_weight_coeff_k * ( dpsidx_m * gradx_at_pt +
1079 dpsidy_m * grady_at_pt +
1080 dpsidz_m * gradz_at_pt ) +
1081 bases_val_m * ( advection_term + source_term ) ;
1082 }
1083 }
1084 }
1085
1086 KOKKOS_INLINE_FUNCTION
1087 void operator()( const unsigned ielem ) const
1088 {
1089 double x[ FunctionCount ] ;
1090 double y[ FunctionCount ] ;
1091 double z[ FunctionCount ] ;
1092 unsigned node_index[ ElemNodeCount ];
1093
1094 scalar_type val[ FunctionCount ] ;
1095 fad_scalar_type elem_res[ FunctionCount ] ;
1096
1097 // Gather nodal coordinates and solution vector:
1098 gatherSolution( ielem, val, node_index, x, y, z, elem_res );
1099
1100 // Compute nodal element residual vector:
1101 computeElementResidual( val, x, y, z, elem_res );
1102
1103 // Scatter nodal element residual in global vector:
1104 this->scatterResidual( ielem, node_index, elem_res );
1105 }
1106}; /* ElementComputation */
1107
1108template< class ExecutionSpace , BoxElemPart::ElemOrder Order ,
1109 class CoordinateMap , typename ScalarType >
1111 < Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
1112 CrsMatrix< ScalarType , ExecutionSpace > ,
1113 FadQuadPoint > :
1114 public ElementComputation< Kokkos::Example::BoxElemFixture< ExecutionSpace , Order , CoordinateMap > ,
1115 CrsMatrix< ScalarType , ExecutionSpace > ,
1116 Analytic > {
1117public:
1118
1122
1125
1126 static const unsigned FunctionCount = base_type::FunctionCount;
1127 static const unsigned IntegrationCount = base_type::IntegrationCount;
1128 static const unsigned ElemNodeCount = base_type::ElemNodeCount;
1129
1131
1133
1135 const typename base_type::mesh_type & arg_mesh ,
1136 const typename base_type::vector_type & arg_solution ,
1137 const typename base_type::elem_graph_type & arg_elem_graph ,
1138 const typename base_type::sparse_matrix_type & arg_jacobian ,
1139 const typename base_type::vector_type & arg_residual ) :
1140 base_type(arg_mesh, arg_solution, arg_elem_graph,
1141 arg_jacobian, arg_residual) {}
1142
1143 //------------------------------------
1144
1145 void apply() const
1146 {
1147 const size_t nelem = this->elem_node_ids.extent(0);
1148 parallel_for( nelem , *this );
1149 }
1150
1151 KOKKOS_INLINE_FUNCTION
1153 const scalar_type dof_values[] ,
1154 const double x[],
1155 const double y[],
1156 const double z[],
1157 scalar_type elem_res[] ,
1158 scalar_type elem_mat[][FunctionCount] ) const
1159 {
1160 double coeff_k = 3.456;
1161 double coeff_src = 1.234;
1162 double advection[] = { 1.1, 1.2, 1.3 };
1163 double dpsidx[ FunctionCount ] ;
1164 double dpsidy[ FunctionCount ] ;
1165 double dpsidz[ FunctionCount ] ;
1166
1167 fad_scalar_type value_at_pt(4, 0, 0.0) ;
1168 fad_scalar_type gradx_at_pt(4, 1, 0.0) ;
1169 fad_scalar_type grady_at_pt(4, 2, 0.0) ;
1170 fad_scalar_type gradz_at_pt(4, 3, 0.0) ;
1171 for ( unsigned i = 0 ; i < IntegrationCount ; ++i ) {
1172
1173 const double integ_weight = this->elem_data.weights[i];
1174 const double* bases_vals = this->elem_data.values[i];
1175 const double detJ =
1176 this->transform_gradients( this->elem_data.gradients[i] ,
1177 x , y , z ,
1178 dpsidx , dpsidy , dpsidz );
1179 const double detJ_weight = detJ * integ_weight;
1180 const double detJ_weight_coeff_k = detJ_weight * coeff_k;
1181
1182 value_at_pt.val() = 0.0 ;
1183 gradx_at_pt.val() = 0.0 ;
1184 grady_at_pt.val() = 0.0 ;
1185 gradz_at_pt.val() = 0.0 ;
1186 for ( unsigned m = 0 ; m < FunctionCount ; m++ ) {
1187 value_at_pt.val() += dof_values[m] * bases_vals[m] ;
1188 gradx_at_pt.val() += dof_values[m] * dpsidx[m] ;
1189 grady_at_pt.val() += dof_values[m] * dpsidy[m] ;
1190 gradz_at_pt.val() += dof_values[m] * dpsidz[m] ;
1191 }
1192
1193 const fad_scalar_type source_term =
1194 coeff_src * value_at_pt * value_at_pt ;
1195
1196 const fad_scalar_type advection_term =
1197 advection[0]*gradx_at_pt +
1198 advection[1]*grady_at_pt +
1199 advection[2]*gradz_at_pt;
1200
1201 for ( unsigned m = 0; m < FunctionCount; ++m) {
1202 const double bases_val_m = bases_vals[m] * detJ_weight ;
1203 fad_scalar_type res =
1204 detJ_weight_coeff_k * ( dpsidx[m] * gradx_at_pt +
1205 dpsidy[m] * grady_at_pt +
1206 dpsidz[m] * gradz_at_pt ) +
1207 bases_val_m * ( advection_term + source_term ) ;
1208
1209 elem_res[m] += res.val();
1210
1211 scalar_type * const mat = elem_mat[m] ;
1212 for( unsigned n = 0; n < FunctionCount; n++) {
1213 mat[n] += res.fastAccessDx(0) * bases_vals[n] +
1214 res.fastAccessDx(1) * dpsidx[n] +
1215 res.fastAccessDx(2) * dpsidy[n] +
1216 res.fastAccessDx(3) * dpsidz[n];
1217 }
1218 }
1219 }
1220 }
1221
1222 KOKKOS_INLINE_FUNCTION
1223 void operator()( const unsigned ielem ) const
1224 {
1225 double x[ FunctionCount ] ;
1226 double y[ FunctionCount ] ;
1227 double z[ FunctionCount ] ;
1228 unsigned node_index[ ElemNodeCount ];
1229
1230 scalar_type val[ FunctionCount ] ;
1231 scalar_type elem_res[ FunctionCount ] ;
1232 scalar_type elem_mat[ FunctionCount ][ FunctionCount ] ;
1233
1234 // Gather nodal coordinates and solution vector:
1235 this->gatherSolution( ielem, val, node_index, x, y, z, elem_res, elem_mat );
1236
1237 // Compute nodal element residual vector and Jacobian matrix:
1238 computeElementResidualJacobian( val, x, y, z, elem_res, elem_mat );
1239
1240 // Scatter nodal element residual and Jacobian in global vector and matrix:
1241 this->scatterResidual( ielem, node_index, elem_res, elem_mat );
1242 }
1243}; /* ElementComputation */
1244
1245} /* namespace FENL */
1246} /* namespace Example */
1247} /* namespace Kokkos */
1248
1249//----------------------------------------------------------------------------
1250
1251#endif /* #ifndef KOKKOS_EXAMPLE_FENLFUNCTORS_HPP */
expr val()
Generate a distributed unstructured finite element mesh from a partitioned NX*NY*NZ box of elements.
Kokkos::View< const double *[SpaceDim], Device > node_coord_type
Kokkos::View< const unsigned *[ElemNode], Device > elem_node_type
sparse_matrix_type::StaticCrsGraphType sparse_graph_type
ElementComputationBase(const mesh_type &arg_mesh, const vector_type &arg_solution, const elem_graph_type &arg_elem_graph, const sparse_matrix_type &arg_jacobian, const vector_type &arg_residual)
Kokkos::Example::BoxElemFixture< ExecutionSpace, Order, CoordinateMap > mesh_type
NodeNodeGraph< elem_node_type, sparse_graph_type, ElemNodeCount >::ElemGraphType elem_graph_type
Kokkos::View< scalar_type *[FunctionCount], execution_space > elem_vectors_type
Kokkos::View< scalar_type *[FunctionCount][FunctionCount], execution_space > elem_matrices_type
KOKKOS_INLINE_FUNCTION double transform_gradients(const double grad[][FunctionCount], const double x[], const double y[], const double z[], double dpsidx[], double dpsidy[], double dpsidz[]) const
CrsMatrix< ScalarType, ExecutionSpace > sparse_matrix_type
Kokkos::Example::HexElement_Data< mesh_type::ElemNode > element_data_type
Kokkos::View< scalar_type *, Kokkos::LayoutLeft, execution_space > vector_type
ElementComputation(const typename base_type::mesh_type &arg_mesh, const typename base_type::vector_type &arg_solution, const typename base_type::elem_graph_type &arg_elem_graph, const typename base_type::sparse_matrix_type &arg_jacobian, const typename base_type::vector_type &arg_residual)
ElementComputation< Kokkos::Example::BoxElemFixture< ExecutionSpace, Order, CoordinateMap >, CrsMatrix< ScalarType, ExecutionSpace >, Analytic > base_type
KOKKOS_INLINE_FUNCTION void computeElementResidualJacobian(const scalar_type dof_values[], const double x[], const double y[], const double z[], scalar_type elem_res[], scalar_type elem_mat[][FunctionCount]) const
ElementComputation< Kokkos::Example::BoxElemFixture< ExecutionSpace, Order, CoordinateMap >, CrsMatrix< ScalarType, ExecutionSpace >, FadElement > base_type
KOKKOS_INLINE_FUNCTION void gatherSolution(const unsigned ielem, scalar_type val[], unsigned node_index[], double x[], double y[], double z[], fad_scalar_type res[]) const
ElementComputation(const typename base_type::mesh_type &arg_mesh, const typename base_type::vector_type &arg_solution, const typename base_type::elem_graph_type &arg_elem_graph, const typename base_type::sparse_matrix_type &arg_jacobian, const typename base_type::vector_type &arg_residual)
KOKKOS_INLINE_FUNCTION void computeElementResidual(const scalar_type dof_values[], const double x[], const double y[], const double z[], fad_scalar_type elem_res[]) const
KOKKOS_INLINE_FUNCTION void gatherSolution(const unsigned ielem, scalar_type val[], unsigned node_index[], double x[], double y[], double z[], scalar_type res[], scalar_type mat[][FunctionCount]) const
KOKKOS_INLINE_FUNCTION void computeElementResidualJacobian(const scalar_type dof_values[], const double x[], const double y[], const double z[], scalar_type elem_res[], scalar_type elem_mat[][FunctionCount]) const
ElementComputation(const typename base_type::mesh_type &arg_mesh, const typename base_type::vector_type &arg_solution, const typename base_type::elem_graph_type &arg_elem_graph, const typename base_type::sparse_matrix_type &arg_jacobian, const typename base_type::vector_type &arg_residual)
KOKKOS_INLINE_FUNCTION void scatterResidual(const unsigned ielem, const unsigned node_index[], const scalar_type res[], const scalar_type mat[][FunctionCount]) const
ElementComputation(const typename base_type::mesh_type &arg_mesh, const typename base_type::vector_type &arg_solution, const typename base_type::elem_graph_type &arg_elem_graph, const typename base_type::sparse_matrix_type &arg_jacobian, const typename base_type::vector_type &arg_residual)
KOKKOS_INLINE_FUNCTION void gatherSolution(const unsigned ielem, fad_scalar_type val[], unsigned node_index[], double x[], double y[], double z[], fad_scalar_type res[]) const
KOKKOS_INLINE_FUNCTION void computeElementResidual(const fad_scalar_type dof_values[], const double x[], const double y[], const double z[], fad_scalar_type elem_res[]) const
KOKKOS_INLINE_FUNCTION void operator()(const unsigned irow, unsigned &update, const bool final) const
KOKKOS_INLINE_FUNCTION void sort_graph_entries(const unsigned irow) const
KOKKOS_INLINE_FUNCTION void fill_elem_graph_map(const unsigned ielem) const
KOKKOS_INLINE_FUNCTION void fill_graph_entries(const unsigned iset) const
KOKKOS_INLINE_FUNCTION void init(unsigned &update) const
KOKKOS_INLINE_FUNCTION void operator()(const unsigned iwork) const
Kokkos::UnorderedMap< key_type, void, execution_space > SetType
KOKKOS_INLINE_FUNCTION void init(const TagFillNodeSet &, unsigned &update) const
Kokkos::View< unsigned *[ElemNode][ElemNode], execution_space > ElemGraphType
KOKKOS_INLINE_FUNCTION void join(const TagFillNodeSet &, unsigned &update, const unsigned &input) const
ElemNodeIdView::execution_space execution_space
Kokkos::View< unsigned, execution_space > UnsignedValue
KOKKOS_INLINE_FUNCTION void operator()(const TagFillNodeSet &, unsigned ielem, unsigned &count) const
KOKKOS_INLINE_FUNCTION void join(unsigned &update, const unsigned &input) const
NodeNodeGraph(const ElemNodeIdView &arg_elem_node_id, const unsigned arg_node_count, Times &results)
CrsGraphType::row_map_type::non_const_type RowMapType
Fad specializations for Teuchos::BLAS wrappers.
Uncopyable z
const double y
#define Method
int * count
@ NoInitDerivArray
Do not initialize the derivative array.
Kokkos::StaticCrsGraph< unsigned, Space, void, void, unsigned > StaticCrsGraphType
CrsMatrix(const StaticCrsGraphType &arg_graph)