ROL
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
Normalization_Constraint< Real > Class Template Reference

#include <example_01.hpp>

+ Inheritance diagram for Normalization_Constraint< Real >:

Public Member Functions

 Normalization_Constraint (int n, Real dx)
 
void value (Vector< Real > &c, const Vector< Real > &psi, Real &tol)
 Evaluate \(c[\psi]\).
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(c'[\psi]v\).
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \((c'[\psi])^\ast v\).
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(((c''[\psi])^\ast v)u\).
 
 Normalization_Constraint (int n, Real dx, ROL::Ptr< FiniteDifference< Real > > fd, bool exactsolve)
 
void value (Vector< Real > &c, const Vector< Real > &psi, Real &tol)
 Evaluate \(c[\psi]\).
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(c'[\psi]v\).
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \((c'[\psi])^\ast v\).
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &psi, Real &tol)
 Evaluate \(((c''[\psi])^\ast v)u\).
 
std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &psi, Real &tol)
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void update (const Vector< Real > &x, UpdateType type, int iter=-1)
 Update constraint function.
 
virtual void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions.
x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).
 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
 
void activate (void)
 Turn on constraints.
 
void deactivate (void)
 Turn off constraints.
 
bool isActivated (void)
 Check if constraints are on.
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application.
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application.
 
virtual std::vector< std::vector< Real > > checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian.
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian.
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian.
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Types

typedef std::vector< Real > vector
 
typedef Vector< Real > V
 
typedef StdVector< Real > SV
 
typedef vector::size_type uint
 
typedef std::vector< Real > vector
 
typedef vector::size_type uint
 

Private Member Functions

ROL::Ptr< const vectorgetVector (const V &x)
 
ROL::Ptr< vectorgetVector (V &x)
 

Private Attributes

uint nx_
 
Real dx_
 
ROL::Ptr< FiniteDifference< Real > > fd_
 
bool exactsolve_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class Normalization_Constraint< Real >

Constraint class

Definition at line 237 of file gross-pitaevskii/example_01.hpp.

Member Typedef Documentation

◆ vector [1/2]

template<class Real >
typedef std::vector<Real> Normalization_Constraint< Real >::vector
private

Definition at line 239 of file gross-pitaevskii/example_01.hpp.

◆ V

template<class Real >
typedef Vector<Real> Normalization_Constraint< Real >::V
private

Definition at line 240 of file gross-pitaevskii/example_01.hpp.

◆ SV

template<class Real >
typedef StdVector<Real> Normalization_Constraint< Real >::SV
private

Definition at line 241 of file gross-pitaevskii/example_01.hpp.

◆ uint [1/2]

template<class Real >
typedef vector::size_type Normalization_Constraint< Real >::uint
private

Definition at line 243 of file gross-pitaevskii/example_01.hpp.

◆ vector [2/2]

template<class Real >
typedef std::vector<Real> Normalization_Constraint< Real >::vector
private

Definition at line 597 of file gross-pitaevskii/example_02.hpp.

◆ uint [2/2]

template<class Real >
typedef vector::size_type Normalization_Constraint< Real >::uint
private

Definition at line 598 of file gross-pitaevskii/example_02.hpp.

Constructor & Destructor Documentation

◆ Normalization_Constraint() [1/2]

template<class Real >
Normalization_Constraint< Real >::Normalization_Constraint ( int n,
Real dx )
inline

Definition at line 261 of file gross-pitaevskii/example_01.hpp.

◆ Normalization_Constraint() [2/2]

template<class Real >
Normalization_Constraint< Real >::Normalization_Constraint ( int n,
Real dx,
ROL::Ptr< FiniteDifference< Real > > fd,
bool exactsolve )
inline

Definition at line 607 of file gross-pitaevskii/example_02.hpp.

Member Function Documentation

◆ getVector() [1/2]

template<class Real >
ROL::Ptr< const vector > Normalization_Constraint< Real >::getVector ( const V & x)
inlineprivate

◆ getVector() [2/2]

template<class Real >
ROL::Ptr< vector > Normalization_Constraint< Real >::getVector ( V & x)
inlineprivate

◆ value() [1/2]

template<class Real >
void Normalization_Constraint< Real >::value ( Vector< Real > & c,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(c[\psi]\).

\[ c[\psi]= \int\limits_0^1 |\psi|^2\,\mathrm{d}x - 1 \]

where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences. This constraint is a scalar

Implements ROL::Constraint< Real >.

Definition at line 268 of file gross-pitaevskii/example_01.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyJacobian() [1/2]

template<class Real >
void Normalization_Constraint< Real >::applyJacobian ( Vector< Real > & jv,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(c'[\psi]v\).

\[ c'[\psi]v= 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]

The action of the Jacobian on a vector produces a scalar

Reimplemented from ROL::Constraint< Real >.

Definition at line 287 of file gross-pitaevskii/example_01.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyAdjointJacobian() [1/2]

template<class Real >
void Normalization_Constraint< Real >::applyAdjointJacobian ( Vector< Real > & ajv,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \((c'[\psi])^\ast v\).

\[ (c'[\psi])^\ast v = 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]

The action of the Jacobian adjoint on a scalar produces a vector

Reimplemented from ROL::Constraint< Real >.

Definition at line 309 of file gross-pitaevskii/example_01.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyAdjointHessian() [1/2]

template<class Real >
void Normalization_Constraint< Real >::applyAdjointHessian ( Vector< Real > & ahuv,
const Vector< Real > & u,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(((c''[\psi])^\ast v)u\).

\[ ((c''[\psi])^\ast v)u = 2 v u \]

The action of the Hessian adjoint on a on a vector v in a direction u produces a vector of the same size as \(\psi\)

Reimplemented from ROL::Constraint< Real >.

Definition at line 331 of file gross-pitaevskii/example_01.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ value() [2/2]

template<class Real >
void Normalization_Constraint< Real >::value ( Vector< Real > & c,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(c[\psi]\).

\[ c[\psi]= \int\limits_0^1 |\psi|^2\,\mathrm{d}x - 1 \]

where the integral is approximated with the trapezoidal rule and the derivative is approximated using finite differences. This constraint is a scalar

Implements ROL::Constraint< Real >.

Definition at line 615 of file gross-pitaevskii/example_02.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyJacobian() [2/2]

template<class Real >
void Normalization_Constraint< Real >::applyJacobian ( Vector< Real > & jv,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(c'[\psi]v\).

\[ c'[\psi]v= 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]

The action of the Jacobian on a vector produces a scalar

Reimplemented from ROL::Constraint< Real >.

Definition at line 634 of file gross-pitaevskii/example_02.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyAdjointJacobian() [2/2]

template<class Real >
void Normalization_Constraint< Real >::applyAdjointJacobian ( Vector< Real > & ajv,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \((c'[\psi])^\ast v\).

\[ (c'[\psi])^\ast v = 2 \int\limits_0^1 \psi v\,\mathrm{d}x \]

The action of the Jacobian adjoint on a scalar produces a vector

Reimplemented from ROL::Constraint< Real >.

Definition at line 656 of file gross-pitaevskii/example_02.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ applyAdjointHessian() [2/2]

template<class Real >
void Normalization_Constraint< Real >::applyAdjointHessian ( Vector< Real > & ahuv,
const Vector< Real > & u,
const Vector< Real > & v,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Evaluate \(((c''[\psi])^\ast v)u\).

\[ ((c''[\psi])^\ast v)u = 2 v u \]

The action of the Hessian adjoint on a on a vector v in a direction u produces a vector of the same size as \(\psi\)

Reimplemented from ROL::Constraint< Real >.

Definition at line 678 of file gross-pitaevskii/example_02.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::getVector(), and Normalization_Constraint< Real >::nx_.

◆ solveAugmentedSystem()

template<class Real >
std::vector< Real > Normalization_Constraint< Real >::solveAugmentedSystem ( Vector< Real > & v1,
Vector< Real > & v2,
const Vector< Real > & b1,
const Vector< Real > & b2,
const Vector< Real > & psi,
Real & tol )
inlinevirtual

Solve the system

\[ \begin{\pmatrix} K & c'^\ast(\psi)\\ c'(\psi) & 0 \end{pmatrix} \begin{pmatrix} v_1\\v_2 \end{pmatrix}=\begin{pmatrix} b_1\\b_2\end{pmatrix}\]

In this example, \(K\) is the finite difference Laplacian the constraint is a scalar and the Jacobian is a vector and the exact inverse can be computed using the Schur complement method

Reimplemented from ROL::Constraint< Real >.

Definition at line 706 of file gross-pitaevskii/example_02.hpp.

References Normalization_Constraint< Real >::dx_, Normalization_Constraint< Real >::exactsolve_, Normalization_Constraint< Real >::fd_, Normalization_Constraint< Real >::getVector(), Normalization_Constraint< Real >::nx_, ROL::Vector< Real >::plus(), ROL::Vector< Real >::scale(), ROL::Vector< Real >::set(), and ROL::Constraint< Real >::solveAugmentedSystem().

Member Data Documentation

◆ nx_

template<class Real >
uint Normalization_Constraint< Real >::nx_
private

◆ dx_

template<class Real >
Real Normalization_Constraint< Real >::dx_
private

◆ fd_

template<class Real >
ROL::Ptr<FiniteDifference<Real> > Normalization_Constraint< Real >::fd_
private

◆ exactsolve_

template<class Real >
bool Normalization_Constraint< Real >::exactsolve_
private

The documentation for this class was generated from the following files: