Trustix Secure Linux 1.2 Users Guide (v1.2.0)

Copyright (© 2000 Trustix AS
November 27, 2000

Contents

1 Introduction

2

3

1.1
1.2
1.3
1.4
1.5
1.6
1.7

What is Linux?
The command line
Basic commands 0oL
Editing afile 0oL
Usingrpm oo
Service management
Generating a server certificate for use with OpenSSL

Managing user accounts

21
2.2
2.3
24

2.5
2.6
2.7

2.8

Introductiono
The ‘su’ command
Addingawuser
Deletingauser
2.4.1 Choosing a good password
2.4.2 Changing password
Account Expiration
Managing groupso
The basics of file permissions
2.7.1 Changing file permissions
2.7.2 Changing the owner and group of a file . . .
Disk quotas

Windows File and Print Services

3.1
3.2

3.3
3.4

Installation
Configuring Samba
3.2.1 Setting the workgroup
322 Addingusers
3.2.3 Usernames
3.2.4 Username level
Plain text passwords
WINS . .
3.4.1 Setting up Samba as a WINS server
3.4.2 Using another WINS server

0 1 O ULk W w W

© © oo @@

= = e e e e
LU W W N == O

16
17
17
17
18
18
18
19
19
19

3.5 Logonscripts L

4 Web Services

4.1 Introduction L
4.2 Security
4.3 Installation L
4.4 Overview of /home/httpd Lo L
4.5 Configuration L

4.5.1 CGIscripts o . o 0

4.5.2 Virtual servers

4.5.3 Otheroptions
4.6 Logfiles e

5 E-Mail Server
5.1 Installation and first time configuration
5.1.1 Forwarding root’smail oo
5.1.2 Setting up mail domain names
5.1.3 Setting up a mail server for send-only
5.2 Forwarding mail Lo L
5.3 Reading mail
5.4 Encrypted mail exchange oo Lo,

6 The DNS name server
6.1 Setting up a caching only name server
6.2 Setting up a name server for a domain

7 Print services
7.1 Configuring a printer
7.2 Running the print server

Acknowledgements
e Linux is a trademark of Linus Torvalds

e UNIX is a trademark of the open group

20

21
21
21
21
21
22
22
23
24
24

24
25
25
25
26
26
27
27

27
28
28

e Some parts of this documentation are based on various man pages and documents from

the Linux Documentation Project (http://www.linuxdoc.org)

e We thank RedHat and Mandrake without whom the creation of Trustix Secure Linux

would have been a much bigger task.

1 Introduction

This is the users manual for Trustix Secure Linux — A Linux based operating system made
by Trustix AS especially for servers. In this document, we will attempt to describe what we
believe will be the most common tasks performed on this system.

We hope you will have as much fun using Trustix Secure Linux as we had creating it!

1.1 What is Linux?

Linux is an operating system (OS) kernel created by Linus Torvalds and a loosely knit team
of contributors from all around the world. A complete operating system consists of several
programs and libraries in addition to the OS kernel.

A Linux distribution is a collection of such programs and libraries, as well as the OS
kernel and several applications and services. There are several Linux distributions available
on the market, but Trustix felt that most of these were too much geared for running on desktop
computers and thus cumbersome for server use. We therefore decided to create Trustix Secure
Linux — a linux distribution for servers with a primary focus on security and simplicity.

Linux is a clone of Unix and therefore share a lot of characteristics with it. In this docu-
mentation the word Unix will be used in the meaning of Unix and free clones like *BSD and
Linux.

1.2 The command line

To be able to use Unix efficiently, one must learn to use the command line. Command Line
Interfaces are known for not being very friendly to new users, but potentially much more
powerful than any GUI (Graphical User Interface). Since complexity and security area two
things that do not go very well together, and GUI solutions are much more complex than CLI
(Command Line Interface) from a design point of view, we have chosen to only support CLI
in Trustix Secure Linux.

We also felt that at least we would not want to weigh down a server with loads of graphical
bells and whistles that we wouldn’t see anyway. Our servers are on the fourth floor, while
the developers and administrators sit on the ground floor only seeing the servers through ssh
login. We believe that similar configurations are more the rule than the exception around the
world.

When giving examples of commands to enter on the command line, we will prepend a #
if the command is supposed to be run as root, and a $ if the command should be run as a
normal user. This preceding character should not actually be entered on the command line,
as it is only put in the documentation to show what should be entered on the command line.
Actually, you will find this character as the last letter of the command prompt in many Unix
operating systems.

When describing how to use a command, the following form is often used:

$ command <argument> [argument]

The $ means that the command could be issued by a normal user. The arguments in triangular
brackets (‘<>’) should always be given to the program, while arguments in square brackets
(‘) are optional. The fictional command ‘command’ from the above example should be called
like this (always remembering not to actually type in the preceding $s and #s):

$ command arg
or

$ command arg nextarg

1.3 Basic commands

To navigate the directory tree of a Unix system, you use the command ‘cd’. This command
works just like in DOS/Windows — you use the directory (or “folder” in windows terms) you
want to move to as the argument. To check what directory you are currently working in, you
can use the command ‘pwd’ (Print Working Directory). Note that Unix systems use the slash
(/) instead of the backslash (\) as directory separator.

Example: To make /home your working directory, use the following command:

$ cd /home

To copy a file, use ‘cp <source> <destination>’. To move or rename a file, use ‘mv’, which has
the same basic syntax as ‘cp’.

Example: To copy the file /home/user/filename to the directory /home/user/files/, you
could write the following:

$ cp /home/user/filename /home/user/files/
If /home/user/ is your working directory (cd /home/user/), it is enough to write:
$ cp filename files/

To make a command work on many files at the same time, use the wildcard ‘*’. This
wildcard expands to mean “all files”. Thus the command:

$ cp * /home/user/files/

would copy all files from the current working directory to /home/user/files. You could
also use a command like this:

$ cp /home/user/files/* /home/user/morefiles

Similarly, to copy all the files from the current working directory to /home/user/files/,
you would use this command:

$ cp * /home/user/files

Paths like /home/user/files can be specified relatively to your working directory or as
“absolute paths” that can mean only one place in the file hierarchy. The difference between
absolute and relative paths is the inclusion of a preceding ‘/’.

To clarify with an example: If your current working directory is /home/john/, specify-
ing the path /home/john/files/ would mean the same as just saying files/ to the system.
The difference is that if your working directory was /home/pete/, saying files/ would mean
/home/pete/files, while saying /home/john/files still would mean the same.

If this seems unclear, try rereading the above examples of ‘cp’ usage keeping relative and
absolute paths in mind.

To list the files and directories in your working directory, use the command ‘Is’. To get a
more comprehensive listing with more information about each file, use ‘Is -1’.

As in DOS/Windows, it is also possible in Unix to have hidden files, but unlike those
operating systems, ‘hidden’ is not a file attribute in Unix. Instead, all files or directories
which have names starting with a dot (‘.”) are hidden. To list all files including “hidden”
files with ‘ls’, use ‘ls -a’. You can also specify several arguments to Is at once. To get a
comprehensive listing of all files—including hidden ones—in a directory, use ‘Is -1a’.

To list the contents of a file, you can use ‘cat <filename>’. This command dumps to the
screen the whole contents of the file specified as an argument. ‘cat’ can also take several
filenames as arguments, and print their contents in the order specified at the command line.

If the output from ‘cat’ is more than one screenful of text, you would traditionally use
‘more’ instead. ‘more <filename>’ stops after one screenful of text, and allows you to scroll
down one screenful by pressing the space bar, or one line by pressing the enter key.

A more convenient alternative to ‘more’, called ‘less’ is also offered. This command enables
the user to also move upwards in the file that is displayed, and also has some more advanced
features. The arrow keys on the keyboard are used to scroll up and down. To search for a
string, type ‘/’ followed by the string you want to search for and hit the enter key. To get the
next hit for your search string, press ‘n’. When you are done reading, press ‘q’ to quit.

A bigger listing of commands for ‘less’ can be accessed by pressing the ‘h’ key while viewing
a file.

The commands ‘more’ and ‘less’ can also be used if the output from a program is too big
to fit the screen. If your working directory is /bin (cd /bin), the output from ’Is -1’ would not
usually fit the screen. Using ’Is -1 | less’ would open the output of ’Is -1’ in ’less’. Redirecting
the output from one program into another is called piping, and the ’|’ character is called a
pipe.

For comprehensive help on any Unix command, use ‘man’ with the command name as
an argument. As the command uses ‘less’ to display the content, maneuvering inside man is
done the same way as in less.

1.4 Editing a file

The editor included with Trustix Secure Linux is called ‘vi’. This is the standard editor for
Unix, so chances are that if you learn at least the basic use of ‘vi’, you will be able to edit
files on any Unix system.

The primary issue to understand about ‘vi’ is its ‘modes’. There are two primary modes -
Command mode and Insert mode. When in command mode, hitting the keys on the keyboard
will issue various commands. Insert mode is used when writing text.

The editor is invoked with ‘vi <filename>’. To edit the file smb.conf in the /etc directory,
you would use ‘vi /etc/smb.conf’.

The editor is started in command mode. Here you can move around using the arrow keys,
or hjkl if your keyboard does not have any arrow keys. To start writing, hit ‘i’ to insert text
before the character the cursor is over or ‘a’ to insert text after it. ‘A’ (shift-a) can be used
to insert text at the end of the current line.

To get back into command mode, hit the escape key.

When in command mode, hitting ‘x’ deletes the character under the cursor (like the
delete-key in windows). ‘X’ (shift-x) works like the backspace key in other editors.
To search for a string in ‘vi’, make sure you are in command mode (hit esc if you are not

sure) then use the same method as for ‘less’. ¢/’, enter the string, press enter. Also like in

‘less’, ‘n’ can be used to cycle through the matches.

The ‘vi’ editor might seem cumbersome and impractical to use, and to a new user, this
might be correct, but as it has many more functions than the ones described here, an expe-
rienced user can really make it fly. For example, this documentation was primarily written
using ‘vi’.

For more information about this editor, we can recommend the book ‘Learning the vi
editor’ from O’Reilly books.

(http://www.oreilly.com/catalog/vi6 /noframes.html)

1.5 Using rpm

The software used by Trustix Secure Linux is typically distributed in rpm packages. The
installation program for rpm packages is called 'rpm’ and is used like this:

rpm -ivh <package_file_name>
To get a list of all packages installed, type the following:
$ rpm -qa

The whole list might be a little overwhelming, and will probably not fit on a terminal
screen, so this is a good place to use pipes and pipe the output to ‘less’ like this:

$ rpm -qa | less

If you want to know if a particular package is installed, you can use the command from the
above example and search for the name as documented earlier. You can also use the following
syntax:

$ rpm -q <packagename>
For example:
$ rpm -q apache

would tell you if apache is installed, and which version of it that is installed if it is.

All packages that come with Trustix Secure Linux are digitally signed with gpg (GNU
Privacy Guard). This means that before installing an rpm, you would be advised to check its
integrity with the following command:

$ rpm -K <filename>

1.6 Service management

Server programs, like the apache web server or the proftpd ftp server, are often referred to as
services. This is quite natural when you think about it, as these are programs that enables
the server computer to give a certain service to other computers.

Many such server programs are included in Trustix Secure Linux, but for security reasons,
and because it is our opinion that the computer should do just what the administrator tells
it and no more, only the most important of these are started by default. However, it is quite
trivial to configure additional services.

The probably easiest way of doing this is by using the program ‘ntsysv’. Just type the
command, and you will find yourself inside an easy to use interface for turning services on
and off. Just make sure that you do not turn on unnecessary services. If unsure as to whether
you need a service or not, the safest option is to leave it off, and test if what you want to do
works with that service off. If it did, you did not need the service. It is never a good idea to
enable a service just because you perhaps might need it later. Enable it later when you need
it, instead.

If a service is enabled by default, though, it is probably for a good reason, so you should
be absolutely sure you know the consequences of what you are doing before turning such a
service off. Common services enabled by default are:

e keytable — Loads the selected keyboard map. Especially important if you do not use a
US keyboard.

e netfs — Automatically mounts any network file systems specified in /etc/fstab.

e network — Scripts for starting up network access. If you do not enable this, the network
will be unavailable on boot.

e random — Saves and restores system entropy pool for higher quality random number
generation. A nice security feature.

e postfix — The mail server, initially configured to only accept local connections. Needed
for services like cron to be able to send mail to root when encountering problems.

e syslog — A facility used by many deamons for logging purposes. If you do not run this,
other services may not be able to generate logs.

e crond — The cron daemon is a standard Unix program that runs user-specified pro-
grams at periodic scheduled times. This program is useful for updating various system
databases and so forth.

Notice that ‘ntsysv’ does not automatically start a configured service, so that if you for
example turned on ‘sshd’, this program would not start until the next time you rebooted you
computer. To start the secure shell service at once, you could use the following command:

service sshd start

To stop a service, change ‘start’ to ‘stop’. Many services will also provide some status
information if the keyword ‘status’ is used. The ‘service’ command will start or stop a specified
service, now, but will not affect what happens the next reboot.

A handy and often more effective alternative to ‘ntsysv’ is the command ‘chkconfig’. To
configure sshd to run on system startup, you would use one of the following:

chkconfig sshd on
or

chkconfig --add sshd

1.7 Generating a server certificate for use with OpenSSL

Many secured services use OpenSSL to achieve encryption. For this to work, you will need
to generate a server certificate and encryption key. To create this, you can use the following
steps:

1. Change directory to /etc/ssl/certs

2. Use the command:

RANDFILE=/dev/urandom openssl req -new -x509 -nodes \
-out server.pem -keyout server.pem -days 365

This generates a RSA private key and a certificate and puts them both in a file called
server.pem. You would probably want to change this if you want to have have separate
certificates for each encrypted service.

Note that this certificate is not very useful for business purposes, as it is not issued by
any well known third part that has paid money to the large browser makers. This means that
users will have to click through all kinds of warnings to get into pages protected by such an
SSL certificate. The connection will still be properly encrypted, but you might have a hard
time convincing people to use your webshop if their computer has first informed them that
you might be doing someone bad.

2 Managing user accounts

Trustix Secure Linux comes bundled with many different tools for managing user acconts.
Programs are provided for adding, configuring and deleting accounts.

When installing the system, the all powerful superuser ‘root’ is created, and you set the
password for this user. You also get the chance to create other user accounts, but it is of
course also possible to do this later at any time. This part of the documentation deals with
creating, managing and deleting user accounts and groups.

2.1 Introduction

Each user that is going to access the computer, should have his or her own user account. If
they do, one can always see who is logged in and who is doing what. Since every user only
has access to a limited set of files and resources, this will also decrease the amount of damage
that can be done through a compromised account or by a malicious user.

If people want to share files on the server, a group can be created for this purpose, and
those who should have access to the files can be added to that group. A user can be a member
of several groups.

2.2 The ‘su’ command

The command ‘su’ allows a user to run a shell with substitute user and group IDs. This means
the command can be used to “switch” between users without having to log out and in again.
This is very pratcical for system administrators, who should use their normal accounts for
most work, but also frequently want to issue one or two commands as root.

To change to root, use the following command:

$ su -
To change to another user, the username is added:
$ su - someuser

If issuing the ‘su’ command as a normal user, you will be prompted for the “target” users
password (i.e. the user you want to change to). When using ‘su’ as root, you will not have to
enter any password, as the all powerful root user can do anything he wants anyway.

NOTE: For security reasons, a user has to be a member of the group with GID 0
(typically the group root) to be able to ‘su’ to root. See the section on group management
for instructions on how to do this.

2.3 Adding a user

Adding a user in Trustix Secure Linux is quite simple. In most circumstances, following the
three steps described here would be sufficient:

1. First, log in as root. This is necessary for gaining access to the files where user infor-
mation is stored.

2. Second, use the command ‘adduser’ and supply a username as an argument to this
command like this:

adduser newuser

The above command creates a new user called ‘newuser’. The username can be almost
anything, but there are some simple criteria that must be matched:

e A username should be created from the 26 letters of the latin alphabet and the
numbers 0 — 9, and thus can not contain any “European” or “special” characters.

e Only lowercase characters should be used.

e While creating usernames longer than 8 letters is possible, many programs depend
on 8 letters being the maximum length of usernames, so one should adhere to this
standard.

Creating a username based on the real name of the user is advisable for practical pur-
poses, but by no means a necessity.

3. The new user has to have a password. To set a password, one uses the command ‘passwd’.
When called with no arguments, passwd defaults to changing the password of the user
invoking the command. The user root can supply the name of the user whose password
should be changed as an argument like this:

passwd newuser
The command produces the following output:

Changing password for user newuser

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

The passwd command will ask for the password twice, to make sure it was spelled
correctly.

4. If you wish to enter additional information about the new user, you can use the ‘chfn’
command with the username supplied. This command is an abbreviation for ’"CHange
FiNger information’, since the preferred way of collecting this information later would
be through the command ‘finger’. If you are using NIS or ‘yellow pages’, prepend ‘yp’
to the command, making it ‘ypchfn’.

chfn newuser

Changing finger information for newuser.
Name []: New User

Office []: Asterisk

Office Phone []: 555-risk

Home Phone []: 555-home

Finger information changed.
We can now use the finger command to view the new information.

finger newuser

Login: newuser Name: New User
Directory: /home/newuser Shell: /bin/bash
Office: Asterisk, 555-risk Home Phone: 555-home
Never logged in.

No mail.

No Plan.

2.4 Deleting a user

If for some reason you want to remove a user totally from you Trustix Secure Linux computer,
you could use the command ‘userdel” as root with the username as the only argument. If you
also want to remove the users home directory, add the switch *-r’.

Example:

userdel -r newuser
finger newuser
no such user

10

2.4.1 Choosing a good password

The password is the last and often only line of defense for a user account, and should be treated
thereafter. One should take due care never to choose a password that is easily guessable. Bad
passwords include, but are not limited to:

e Your own username

e Own name or different variants thereof.

Name of spouse, children, pets, or favourite food.

Anything based on the keys on the keyboard, like asdfgh, qwertyl, and lqweasd. (All
these are real life examples that broke in seconds!)

Anything containing a dictionary word in any language, including reversed words and
words where some letters are removed or changed with numbers.

The length of a password has traditionally been limited to 8 characters, but as Trustix
Secure Linux uses the more powerful MD5 algorithm instead of the traditional crypt(), limits
to a passwords length are virtually removed. Some programs might limit the password to
127 characters, so one should probably not exceed this. A good length minimum length for
a password is 8 characters, but longer passwords are better as long as one does not use
something easily guessable from the above list.

As opposed to usernames, passwords should contain both upper and lower case letters and
also numbers. Always remember that Unix passwords are case sensitive.

Last, here’s a tip for generating a fairly secure password: Think of a phrase that you can
remember easily like “My second boss had pointy hair and said ‘Um..” a lot”. Now take the
first letter of each word, changing words like second into ‘2’. The phrase then translates to
‘M2bhphasUal’. This would be a password that is fairly hard to guess, and at the same time
quite easy for you to remember. Never use phrases that you often use in your daily speak for
constructing such passwords.

It must also be mentioned that M2bhphasUal is no longer usable as a password as it has
been published in this documentation. Think of a phrase yourself.

2.4.2 Changing password

A user should change his or her password at least once a year. To do this, the user logs in
and issues the 'passwd’ command like this:

$ passwd

Changing password for user

(current) UNIX password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

Note that the user first has to enter the current (old) password. Before the new password
is entered twice.

11

2.5 Account Expiration

It is possible to set the expiry of both user accounts and passwords. This can easily be done
with the command ‘chage’. You can get all the expiry information you need about a user by
typing ‘chage -1 username’. For privacy reasons, users can only specify their own username
when doing this. The user root can specify any user. The output of ‘chage -1 username’ can
look something like this:

Minimum: 0

Maximum: 365

Warning: -1

Last Change: Jul 07, 1999
Password Expires: Jul 06, 2000
Account Expires: Nov 02, 2000

The ‘Minimum’ field tells us that the user can change his password anytime he wants to.
You can set the minimum number of days between each password change for the user with:
‘chage -m [mindays| username’. A sane example could be ‘chage -m 7 username’. Here the
user would have to wait one week (7 days) before the password can be changed again.

The reason for the minimum setting is that users often like to keep the same passwords
for exended periods of time. When the time comes that they have to change it, they change
to a temporary password, and then back again to the old one. If one specifies a minimum of
days between each password change, the use of this technique is discouraged.

It is usual to set the maximum number of days a user can keep the same password without
changing it. Frequently changing the password is a matter of system security. Setting the
maximum value is very similar to setting the minimum value. All you have to do, is change
the -m to -M, so the command line would look something like ‘chage -M 365 username’. This
forces the user to change his password within a year.

The warning field specifies how many days before the password expires, the user should
get a warning. In this case, a warning is never given. This can be changed easily by using
‘chage -W <DaysBeforeWarning> username’. This warning is given when users log in, so if
they seldom or never log out, they will not recieve this warning. Setting this to 14 days could
be a good idea.

The three last fields are mostly given away by their names:

e ‘Last Change’ indicates when the user’s password was last changed.

e ‘Password Expires’ is the date when the password will expire. This is the value of ‘Last
Change’ plus the number from the Maximum field.

e ‘Account Expires’ is the date when the account will expire. This can be changed with
the -E switch followed by a date specified to chage. The date should be in the format
MM/DD/YY.

Example: ‘chage -E 09/13/01 username’ will set the account ‘username’
to expire on the 13th of September 2001. One can also specify a number
of days since January 1, 1970 instead of a date.

12

2.6 Managing groups

Groups can be added and removed with much the same commands as users. To add a group,
you use the command ‘groupadd’ followed by the name of the group.
Example:

groupadd newgroup

Running the above example would generate an extra line in the file /etc/group along these
lines:

newgroup:x:105:

This line consists of several fields separated with a ‘" The first field is the name of the
group name, the second is the group password, the third is the numerical group ID or ‘GID’.
The fourth field is a list of the users who are members of this group. In the above example
no users are in the group, making it virtually useless. We add some users to it by writing
the usernames in the fourth field separated by commas. In this example newuser and olduser
have been added in the manner described earlier:

newgroup:x:105:newuser,olduser

Any number of users can be members of any number of groups.

When a user has been added to, or removed from a group, he will have to log out for the
change to take effect.

To delete a group, use the command ’groupdel’ followed by the group name:

groupdel newgroup

The above example issued as the user root will delete the group 'newgroup’ if it exists.
If the group does not exist, the program will tell you so. Files belonging to this group will
still be owned by this GID which is no longer bound to a specific group. Group ownerships
of such files should of course be changed.

2.7 The basics of file permissions

Most Linux systems are designed for multiuser purposes, Trustix Secure Linux included. For
the file system this means that features like file permissions and ownership are necessities.
Users can control the access rights on their files and directories, defining who should is allowed
to read, edit, and execute their files.

There are three different basic permissions: read, write, and execute. These permissions
are defined on three levels: the user in ownership of the file, the group in ownership, and
everybody else regardless of group.

The permissions mean the following:

e Read permission leat a user read the contents of the file, or in the case of directories,
list the contents of the directory.

e Write permission lets the user write to and modify the file. For directories, this permis-
sion lets a user create, rename, or delete files within the directory.

13

e Finally, execute permission lets the user run the file as a program. This is only useful
if the file is a binary program or a script file. For directories, a user will need execute
permission to be able to use the directory as the working directory (cd into it).

Let’s look at an example that demonstrates file permissions. Using the ‘ls’ command with
the ‘-1’ option displays a “long” listing of the file, including file permissions.

/home/larry/fool# ls -1 stuff
“IW-Ir——r—- 1 larry users 505 Mar 13 19:05 stuff

The first field in this listing represents the file permissions. The third field is the owner
of the file (larry) and the fourth field is the group to which the file belongs (users). The last
field is the name of the file (stuff). The other fields are not important in this example.

This file is owned by ‘larry’ and belongs to the group ‘users’. The string ‘-rw-r--r--’
lists in order, the permissions granted to the file’s owner, the file’s group and everybody else.

The first character of the permissions string (-) represents the type of file. A ‘> means a
regular file (as opposed to a directory or device). The next three characters (rw-) represent
the permissions held by the file’s owner, ‘larry’. The ‘v’ stands for ‘read’ and the ‘w’ stands
for ‘write’. Thus, ‘larry’ has read and write permissions to the file ‘stuff’.

As mentioned, besides the read and write permission, there is also the ‘execute’ permission
— represented by an ‘x’. However, a ‘=’ is listed here in place of an ‘x’, so larry doesn’t have
execute permission on this file. this is fine, as the file ‘stuff’ isn’t a program of any kind. Since
Larry is the owner of the file, he may grant himself, or anybody else, execute permission for
the file if he so desires. (This will be covered shortly.)

The next three characters (r--) represents the group’s permissions for the file. The group
that owns this file is ‘users’. Because only an ‘r’ appears here, any user who belongs to the
group ‘users’ may read this file. If the user wants to write to or execute the file, he must ask
‘larry’ to give him the appropriate rights.

The last three characters (also r—-) represent the permissions granted to every other user
on the system (other than the owner of the file and those in the group users). Again, because
only an ‘r’ is present, other users may read the file, but not write to it or execute it.

Some more examples:

-rwxr-xr-x — The owner of the file may read, write, and execute this file. Users in the
file’s group and all others may read and execute the file.

—ry—-—-—--—- — The owner of the file may read and write to the file. No other user can
access the file.

-rwxrwxrwx — All users man read, write to, and execute the file.

2.7.1 Changing file permissions

The command chmod is used to set the permissions on a file. Only the owner of a file may
change the permissions on that file. the syntax of chmod is:

chmod {a,u,g,ot{+,-}{r,w,x} filename

Briefly, you can supply one or more of All, User, Group, or Other. Then you specify wether
you are adding rights (+) or taking them away (-). Finally, you specify one or more of read,
write, and execute. Some examples of legal commands are:

14

$ chmod a+r filename — Gives all users read access to the file.

$ chmod og-x filename — Remove execute permission from users other than the owner.
(g=group, o=other)

$ chmod u+rwx filename — Let the owner of the file read,write and execute the file.

$ chmod o-rwx filename — Remove read, write and execute permissions from users
other than the owner and the users in the file’s group.

2.7.2 Changing the owner and group of a file

It is possible to change a file’s owner and group. To do this, you can use the ‘chown’ and
‘chgrp’ commands (CHange OWNer and CHange GRoUp).
To change the owner of a file, one would write:

chown newowner file

This gives the file ownership to a new owner. Please notice that for security reasons, only
root is able to change the owner of a file.
Changing the group is just as easy:

$ chgrp newgroup file

Notice the usage of the chgrp’ command instead of chown. For the same security reasons,
users are only able to change the group of a file to a groups they are members of. The user
'root’ can change the group of any file to any group.

2.8 Disk quotas

To ensure that a user does not use more disk space than he/she should, one can specify a
maximum amount of disk space that the user can use at any time. A user using far too much
disk space, could effectively jam a badly configured system, as he could fill a whole partition
thus stopping anybody else from writing to the disk. A nice alternative to quotas is of course
educating your users not to use up all the disk space, but accidents will happen even to the
best, so some high quota could prove a nice ‘safety net’ in all cases.

The easiest way to start using quotas, is to specify for which filesystems quotas should be
used in /etc/fstab. Let us say that you want to use quotas for the first partition on the first
SCSI disk which is mounted as /home. The line in /etc/fstab for that device would then look
something like this:

/dev/sdal /home ext2 defaults,usrquota 1 2

Next, use the command ‘quotacheck’ to initialize the disk quotas for the file system:
quotacheck -auvg

Next, turn on quotas with ‘quotaon’

quotaon -a

15

To edit the quota for the user ‘username’ on this partition you would issue the command
‘edquota username’. This will put you into the ‘vi’ editor and enable you to edit the quotas
for the user. It will look something like the folloing:

Quotas for user username:
/dev/sdbl: blocks in use: 40, limits (soft = 0, hard = 0)
inodes in use: 20, limits (soft = 0, hard = 0)

A quota can be specified for both inode use and block use. The most important limit
would be the maximum number of disk blocks the user is allowed to use at any time. A disk
block is the smalles number of bytes that can be allocated on the disk. To find out how big
your disk blocks are, you can do the following;:

1. $ mkdir test

2. $ 1s -1d test
The output from Is could look something like this:
drwxr-xr-x 2 newuser users 1024 Feb 17 10:04 test/

The number written right in front of the file creation date is the file size for files, but for
directories, the block size is reported. The block size in this example is 1024 bytes or 1Kbyte.
If we want the user to be able to use 50MB, but recieve a warning when using more than
40MB, we would edit the lines in edquota to the following:

Quotas for user username:
/dev/sdbl: blocks in use: 40, limits (soft = 40000, hard = 50000)
inodes in use: 20, limits (soft = 0, hard = 0)

3 Windows File and Print Services

The windows fileserver capability of Trustix Secure Linux is handled by a program called
Samba. This package can take care of:

e File and print services.
e Authentication and authorization
e Name resolution

e Service announcement (Browsing)

In other words: Samba allows you to move your computer running Trustix Secure Linux
into your windows “Network Neighbourhood” without causing a stir. It allows the windows
machines, and other computers also running Samba, to access files and print documents
neither knowing nor caring that they are being served by a Linux host.

This is managed by the protocol suite CIFS (Common Internet File System), a name
introduced by Microsoft. At the heart of CIFS, you find SMB (Server Message Block), the
cornerstone of file and printer sharing in a windows network.

16

Samba is an open source implementation of the CIFS protocol suite, and actually a quite
fast implementation, too. When Samba 2.0 was released in January 1999, one of the most
important improvements was speed. Ziff-Davis Publishing used their Netbench software to
benchmark Samba 2.0 on Linux against Windows NT4. They ran all of their tests on the
same PC hardware, and their results showed Samba’s throughput under load to be at least
twice that of Windows NT.

More information about Samba can be found at http://www.samba.org

3.1 Installation

If you didn’t install the fileserver package during the installation of Trustix Secure Linux, you

can easily install it now. Download or locate on your CD, a file named samba-2.0.2tr.i586.rpm

(the version number might differ). Just install it as described earlier in this document.
That’s it. Now on to some basic configuration.

3.2 Configuring Samba

The configuration file for Samba is called smb.conf and resides in the /etc directory. The
default configuration on install is to have the following capabilities:

e FEach user gets his own home directory mapped up.

e Encrypted passwords are default. This means that you will not be able to connect with
Windows 95 without an SMB update, Windows NT 3.x, and Windows NT 4 with service
pack 1 or 2 (SP 3 and up are OK).

e Printer configuration is read from /etc/printcap. Printers configured for the system are
automatically shared.

3.2.1 Setting the workgroup

Before you start using Samba, you should set the server’s workgroup. You will have to be
root to do this. The configuration of the Samba fileserver is set in the file /etc/smb.conf. The
workgroup is set in the [global] section of this file:

[globall
workgroup = workgroupname

‘workgroupname’ should be replaced with the name of the workgroup that the server
should be in.

Now you have to restart the Samba daemon to make it reread the configuration file. Still
as root, issue the following command:

/etc/rc.d/init.d/smb restart

17

3.2.2 Adding users

Samba users are added with the smbadduser program. Do that like this:
smbadduser newuser

The user must also have a Samba password set. This is set with the program smbpasswd
like this:

smbpasswd newuser

Follow the prompts.
Note that all Samba users must first have a valid user account on your system. This is
discussed in the user administration chapter.

3.2.3 Usernames

Client usernames on a SMB network can have up to 255 characters. On a Unix system this
will generally be limited to 8 characters. This means that a user can have one long username
on the client and another short one on the Samba file server. To avoid this problem, you can
use a username map file. Samba needs to be told where to find this in the [global] section of
smb.conf:

[globall
username map = /etc/samba/usermap.txt

Be sure to restrict access to this file so that only root is able to edit it.
The file’s syntax is like this:

johnd = JohnDoe
users = Qaccount
nobody = *

e Wildcards (*) are used to match any free form client username in the username map
file.

e @ is used to map a NT group to a Unix group.

e ; and # are comments

3.2.4 Username level

Windows can often send usernames entirely with capital letters. Windows usernames are not
case sensitive, however Unix usernames are. USER and user would be two different accounts
on a Unix system while on a windows system they would be the same. As a solution to this,
Samba does the following:

1. Check for a user account with the exact name sent by the client.

2. Test the username with all lowercase letters.

18

3. Test the username with the first letter capitalized

If you want Samba to try more combinations of lower and uppercase letters, you can
specify this with the global option username level.

[globall
username level = 3

With this value, Samba would try all permutations of the username haveing three capital
letters.

3.3 Plain text passwords

To be able to use old windows versions as clients for Samba, you will have to enable plain text
passwords. As you have chosen Trustix Secure Linux, we believe that you value the security
of your system. We therefore recommend that you upgrade your clients instead of lessening
security, but if you have a specific reason for using old clients, Samba also has support for
unencrypted passwords. To enable this, you will have to make some small changes in the file
/etc/smb.conf:

[globall
security = user
encrypt passwords = no

Restart Samba to reflect these changes:
/etc/rc.d/init.d/smb restart

To make clients that use encrypted passwords use plain text passwords instead, locate
and run the one of the two scripts NT4 _PlainPassword.reg and Win95_PlainPassword.reg
that fits your system. The one for Win95 also works with Win98. These files can be found
on the Trustix Secure Linux system in the directory /usr/doc/samba-2.0.7/docs. The client
computers need to be rebooted after running the scripts for the changes to take effect.

3.4 WINS

In the old days, before NetBIOS name servers (NBNS), name resolution worked entirely by
broadcast. This approach is not possible if your domain spreads over different subnets, because
the broadcast would be stopped by the routers. To overcome this problem, Microsoft provides
WINS, Windows Internet Naming Service. Name registration and resolution requests can be
directed to one computer in the network instead of using the awkward broadcast mechanism.

Your Trustix Samba server is by default set up as a WINS server and primary domain
controller in your network.

3.4.1 Setting up Samba as a WINS server

To set up Samba as a WINS server one makes sure that the following is present in the file
/etc/smb.conf:

19

[globall
wins support = yes
name resolve order = wins lmhosts hosts bcast

This is all you have to do. The name resolve order tells Samba how to resolve NetBIOS
names. The values mean the following:

e wins: Use the wins server
e 1lmhosts: Use a LAN Manager LMHOSTFILE
e hosts: Use standard Unix name resolution methods. (/etc/hosts, NIS, DNS)

e bcast: Broadcast method.

3.4.2 Using another WINS server
This should be easy. You just tell Samba where the other WINS server is:

[globall
wins server = 192.168.44.55

This would make Samba redirect all WINS requests to the server at 192.168.44.55.

3.5 Logon scripts

Samba supports the execution of Windows logon scripts. These scripts are stored on the
Samba server and transported to the client and executed there once the user logs on.
This sets up Samba to use logon scripts:

[globall

domain logons = yes
security = user

workgroup = SOME WORKGROUP
os level = 34

local master = yes
preferred master = yes
domain master = yes

logon script = %U.bat

[netlogon]

comment = The domain logon service
path = /export/samba/logon

public = no

writeable = no

browsable = no

The the user johnd logs in, the server will look for johnd.bat. These scripts must reside
in the netlogon base directory, in this case /export/samba/logon.

20

4 Web Services

4.1 Introduction

The web server we have chosen to distribute with Trustix Secure Linux is called Apache. It
was originally based on a program called NCSA httpd 1.3. It has since then evolved into a
much superior product rivalling, and probably surpassing, any other Unix based web server
in terms of functionality, efficiency, and speed. The program is running on an ever increasing
number of internet servers, its user group showing no signs of diminution.

4.2 Security

As in all of our other services, we have focused on security when making the default configura-
tion for the Apache server distributed with Trustix Secure Linux. We have included software
suitable for providing secure http connections, and made some security improvements on the
default configuration.

We have chosen to disable the possibility for running cgi scripts in the default configura-
tion. If you need to run such scripts it is easily enabled, but beware of the security concerns
it causes. As cgi scripts are programs run by the server every time somebody connects to
them with their browser, they run the cgi program. As very few programs, if any at all, are
perfectly programmed one risks the exploitation of security holes by crackers to gain access
where no crackers should be.

If you find that you need cgi scripts, you should know that Trustix Secure Linux comes
readily configured to use the SUEXEC feature provided by Apache. SUEXEC is a wrapper
that makes cgi scripts run with the privileges of the owner of the script, as opposed to the
privileges of the user running the server, most often root or the user nobody. Using SuEXEC
means that an insecure script is more likely to only damage the data belonging to the user
running it.

Although it provides some useful features for editing web pages, we have chosen not to
include the Microsoft FrontPage Extensions in Trustix Secure Linux. This is because even
though it can make some things easier, it has so many security holes that it is not something
you would put on any server you care about. We believe most people would rather use five
minutes more to edit those web pages than wait hours while the admin is restoring the system
from backup because the system was cracked.

4.3 Installation

If you did not select the option to install the web server when you installed Trustix Secure
Linux, you will have to do so manually. The package you need for this is the apache rpm
package from the install CD or a Trustix mirror. Se the introductory chapter for how to
install an rpm package.

The main apache files are installed in /home/httpd, its modules are installed in /usr/lib/apache.
Some files are also put elsewhere on the disk.

4.4 Overview of /home/httpd

The directory /home/httpd contains several directories that are more or less integral to
Apache. These are: cgi-bin, html, and icons. Their uses are in short terms as follows:

21

cgi-bin — This directory contains the cgi-scripts that are to be used by the system. As
a security precaution, it can sometimes be wise to allow only the cgi script residing in this
directory to be run. This would enable users only to run cgi scripts that have been checked and
approved of by an administrator. This would provide adequate security while still allowing the
functionality of cgi scripts. Approved cgi-scripts put in this directory could also be a valuable
addition for users even if they are allowed to roll their own scripts.

html — The html directory is the topmost directory for web documents - The so called
DocumentRoot. When someone writes the URL http://your_server.com in their browser, the
web server responding to your_server.com would read /home/httpd/html/index.html and send
that back over the link. The URL http://your_server.com/foo/bar.html would in this example
correspond to the file /home/httpd/html/foo/bar.html.

This directory also contains a comprehensive manual for the Apache web server.

icons — The directory ‘icons’ is not really very important to the functionality of the
apache server. It only contains a lot of small bitmap pictures that can, as the name implies,
be used as icons on web pages. It uses little disk space, its presence poses no security risk,
and having access to some icons to put on a page can often be quite practical. These icons
are also used when listing the contents of a directory. In addition to this, removing the icons
when upgrading could break web pages already dependent on them. For all these reasons, we
have chosen to include these icons in Trustix Secure Linux.

Use rpm to get a full list of all files installed with the Apache package. The command
would be:

$ rpm -ql apache

4.5 Configuration

To configure the Apache web server, you will typically have to edit its configuration files which
are contained in /etc/httpd/conf. The package comes with a good default configuration, but
there are certain things that you should be aware of, and some defaults you might want to
change. The files are also heavily documented through comments, so you should have few or
no problems understanding what the various options do.

Remember to restart the http daemon when you have made changes to the configuration
files. This can be accomplished using the following command:

/etc/rc.d/init.d/httpd restart

4.5.1 CGI scripts

For reasons already mentioned, the default configuration in Trustix Secure Linux is not to
allow the usage of cgi scripts. If you are sure you want to allow this, you should edit the file
access.conf and find the block starting with <Directory /home/httpd/cgi-bin>. To allow the
execution of cgi scripts, the block should look like this:

<Directory /home/httpd/cgi-bin>
AllowOverride None

Options ExecCGI

</Directory>

22

The “Options” line is used when allowing types of access to directories. The option “Ex-
ecCGI” grants the right to execute cgi scripts in this directory.

You should also make sure that the cgi module is properly loaded. The file httpd.conf
contains many lines starting with LoadModule and Addmodule. You must make sure that
the to following lines are present in the appropriate places:

LoadModule cgi_module modules/mod_cgi.so
AddModule mod_cgi.c

The last thing that must be done to allow execution of cgi-scripts is making sure the
following line is present in the file srm.conf:

AddHandler cgi-script .cgi

If you need to allow execution of cgi scripts from other places than the cgi-bin directory,
typically to allow users to create and use their own cgi scripts, you should only have to add
the option ”ExecCGI” to the ”Options” line of the particular directory block in the config
file.

To enhance the security of the web server while still allowing the usage of cgi scripts,
Trustix Secure Linux comes readily configured with the SUEXEC wrapper. This wrapper will
be used every time a cgi script is run.

4.5.2 Virtual servers

One computer running the Apache web server can be set up to host the web pages of several do-
mains. It can for example be set up to show a different page for http://www.your_server.com,
http://security.your_server.com, and http://www.something_else.com. Making several DNS
names point to the same conputer can be done in any number of ways, all beyond the scope
of a short Apache manual. We refer instead to Apaches own documentation which can be found
at http://www.apache.org/docs/vhosts/index.html, and Glenn Stevens’ extensive DNS guide
at http://eeunix.ee.usm.maine.edu/guides/dns/dns.html.

When you have set up the different DNS entries to point to your server, you will have to
edit the file /etc/httpd/conf/httpd.conf. For each virtual server you should add an entry like
the following with the appropriate names changed to fit your setup (lines starting with a #
are comments and can be removed):

<VirtualHost host.your_server.com>

ServerAdmin webmaster@host.your_server.com

DocumentRoot /home/httpd/html/host.your_server.com
ServerName host.your_server.com

ErrorLog /var/log/httpd/host.your_server.com-error_log
TransferLog /var/log/httpd/host.your_server.com-access_log
</VirtualHost>

ServerAdmin should be set to the e-mail address of the person responsible for the web
server. DocumentRoot defines where the server should search for the pages to display given
the specific ServerName which is defined in the nest line. The ErrorLog and TransferLog
files are where the web server will put its logs when serving pages for the ServerName. The
placement of these log files should concur with the rest of your servers setup.

23

4.5.3 Other options

The Apache web server is extremely configurable. There are many options that deserve men-
tion while still not needing their own chapter. We will attempt to describe the most important
of them here.

DocumentRoot set in srm.conf tells Apache where to look for web documents on the disk.
Should you for whatever reason want to put these files somewhere else than in the default
/home/httpd/html, this is where you inform Apache of the change.

Users can make their own web pages available as http://your_server.com/ username by
putting them in a specified directory inside their home directory. The name of this directory
is specified in the variable UserDir set in srm.conf. The default here is public_html. Note that
‘other’ must be given execute rights to both the users home directory and public_html for this
to work.

In the file httpd.conf, the variable ServerAdmin should be set to the e-mail address of the
person in charge of the web server. The value of ServerAdmin set outside any VirtualHost
block will also be the default value when no other value is specified inside the block.

Apache is a multithreaded server, where each thread communicates with one client. The
values of MinSpareServers, MaxSpareServers, StartServers, and MaxClients are all used to
define limits for the number of processes. The values MinSpareServers and MaxSpareServers
define the minimum and maximum values of threads not currently serving a client. If this
number goes outside the limits defined by these values, extra threads are spawned or killed
until the number of spare servers again is inside these limits. StartServers defines how many
spare servers should be spawned when Apache is started. A sane value should be somewhere
between MinSpareServers and MaxSpareServers. MaxClients defines the maximum number
of clients that can be served at one time. One should take care not to set this limit too low,
as this would result in users not being able to view ones pages. Experimentation is required
to find the ideal values for these options. The default values will be adequate in most cases.

4.6 Log files

For security, debugging and other various reasons, the Apache web server creates extensive
log files in the directory /var/log/httpd. To simplify searching, the date and time are part of
every log entry. If you are having problems with the web server, checking the logs from the
appropriate time is a good place to start.

The access log contains an entry for every page that has been downloaded, and can be used
for statistical purposes. There are several programs that can do this collecting of statistics
automatically. Among the more popular is The Webalizer by Bradford L. Barrett.
(http://www.mrunix.net/webalizer/)

5 E-Mail Server

Mail server software enables sending and receiving e-mail between users and programs. Servers
that are not intended as mail servers should nevertheless have mail server software installed
so that other running services are able to send messages to their administrator.

Trustix has selected the mail transfer agent (MTA) called Postfix as its mail server pro-
gram. This is because Postfix is designed with security in mind. We also include Washington
University’s IMAP and POP daemons.

24

If you are setting up a server to handle users’ e-mail, consider adding IMAP and/or POP
software. Both IMAP and POP are protocols used for reading e-mail over a network or dialup
connection. Using POP, the users may retrieve mail and store it locally on their computer,
while IMAP lets users store their e-mail folders on the mail server, enhancing portability, and
saving local disk space.

Secure IMAP (SIMAP) is normally preferred to standard IMAP, since the data (people’s
passwords and e-mail) is encrypted when sent over the network when using this protocol.

The rest of this chapter describes the installation and configuration of the e-mail services
available on Trustix Secure Linux, and the administrative tasks typically performed.

5.1 Installation and first time configuration

If you didn’t select Mail Server when you installed Trustix Secure Linux, you can install it
later by mounting the CDROM or downloading the portfix rpm from FTP or HT'TP install
sites.
You should also make sure you run postfix by using the command ‘chkconfig postfix on’.
Through this section, the referenced files will be located in /etc/postfix unless otherwise
specified.

5.1.1 Forwarding root’s mail

Mail sent to the root user should be forwarded to the system’s administrator. Edit the aliases
file and find the following line:

#root: you

Remove the ‘#’ and insert your e-mail address instead of ‘you’. Whenever the aliases file
is changed, run the command ‘newaliases’ as root. This is actually quite important, as postfix
does not like to deliver mail to root and will instead just let the mails lie in the spool.

5.1.2 Setting up mail domain names

Usually, you will want to specify that mail sent from your server appears to be coming from the
domain instead of that particular computer, i.e. your from-address should be user@mycorp.com
instead of user@mailserver.mycorp.com. Edit the file main.cf and uncomment the following
line:

#myorigin = $mydomain

If your server is to handle mail for your domain, you need to add the following line to
main.cf:

mydestination = $myhostname,localhost.$mydomain,$mydomain

If you want your server to accept mail for other domains, add those domains to the same
line separated by commas, e.g:

mydestination = $myhostname,localhost.$mydomain,myotherdomain.com,mycorp.org

25

5.1.3 Setting up a mail server for send-only

If your mail server is not supposed to receive mail for a domain, the typical configuration is
to set it up as a “null client”. A null client does not receive mail, and delivers no mail locally.
To set up a null client, add the following lines to main.cf:

myorigin = $mydomain
relayhost = $mydomain

In addition, to prevent mail from being delivered locally, edit the file master.cf, and com-
ment out (prefix with ‘#’) the following lines (Note: they are not necessarily in this order!):

smtp inet n - n - - smtpd
smtp unix - - n - - smtp
local unix - n n - - local

5.2 Forwarding mail

The Postfix mail transfer agent can forward mail from one account to another e-mail address,
or receive mail for an adress that has no matching username on the system. The most common
way to attain this is to use the ‘aliases’ file we used earlier to forward roots mail.

To make the system receive mail for a username that does not exist on the system and
forward it to some valid e-mail address, you would add the following line to the aliases file:

nonexist: someuser

This makes the system receive mail addressed to the non existent user ‘nonexist’ and
forward it to the user ‘someuser’. The user someuser must exist or can also be an other alias
created in the file. Remember to always run ‘newaliases’ after changing the aliases file, as
postfix needs this to know about any changes you have made.

It is also possible to forward the mail to more users with a line like this:

nonexist: someuser, otherusr

You can add as many comma separated usernames or valid e-mail addresses to this line
as you like.

Users can also forward their own e-mail some other account. They can do this by putting
a file called ’.forward’ in their home directory and merely writing the other adress they want
the mail to be forwarded to in this file. It is also possible to specify a file that mail should be
delivered to.

Example .forward:

/home/user/Mailbox
user@work.com
777@mail2sms.com

This example file would make all mail be saved in the file /home/user/Mailbox, and
would also forward the mail to both user@work.com and also the users mobile phone through
a (fictional) mail2sms gateway.

26

5.3 Reading mail

To read mail over the network using other computers as clients, you will need to run one or
both of the pop and imap daemons. To do this, you need to alter one or two lines in the file
/etc/inetd.conf. Open this file as root in an editor and find the following block:

Pop and imap mail services et al

#

#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

You should remove the prepended hashes from the appropriate lines for the services you
want to offer. If you want users to be able to use the imap-protocol, which is supported by
most major mail programs like Netscape Messenger, Microsoft Outlook and Emacs/Gnus,
you would change the block to look like the following;:

Pop and imap mail services et al

#

#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd

You will have to restart inetd with ‘/etc/rc.d/init.d/inet restart’ for the changes to take
effect. If inetd is not already automatically started every time you reboot your computer, you
should run ‘chkconfig inet on’.

5.4 Encrypted mail exchange

The program ‘stunnel’ which comes with Trustix Secure Linux is able to create SSL encrypted
tunnels for services that are normally run through inetd. This is a recommended substitute
for running certain services like imap and pop3 unencrypted.

Before using stunnel, you have to create a site certificate as described in the introductory
chapter.

Stunnel can be started manually or from inetd. The command for starting imap tunneling
program manually is:

stunnel -p /etc/ssl/certs/server.pem -d simap -1 /usr/sbin/imapd

The ‘-p’ switch tells the program where it should look for its certificate, the ‘-d’ switch
makes it run as a daemon on the ‘simap’ port, and the ‘-1’ switch says what program should
be tunneled.

This command can be put in a startup script like /etc/rc.d/rec.local to make it start every
time you boot the computer.

6 The DNS name server

If you want to use your server as a name server, you will be happy to know that Trustix
Secure Linux comes with the program called the Berkeley Internet Name Daemon, or bind
for short.

27

6.1 Setting up a caching only name server

A chaching only name server will find the answer to name queries and remember the answer
for the next time you need it. This will shorten the waiting time the next time, especially
with a slow connection.

Bind comes already configured to act as a caching name server. All you have to do is
start it with ‘/etc/rc.d/init.d/named start’, and add it to your default configuration with
‘chkconfig named on’.

To make your system actually use the name server, you will also have to make a few
changes to the file /etc/resolv.conf. This file should have been created during the installation,
and should look something like this:

search your-domain.com other-domain.com
nameserver 192.168.1.10

The hostnames and IP-address should match your setup. The system should be told to
use 127.0.0.1 as nameserver, making the file look like this:

search your-domain.com other-domain.com
nameserver 127.0.0.1
nameserver 192.168.1.10

6.2 Setting up a name server for a domain

While bind can be nice for just caching the output from other name servers, it is even better
as a name server for serving your domain. In this example, we will set up the computer at a
master server for ‘your-domain.com’. This name and all IP-addresses should be changed into
whatever is appropriate for your setup.

First, insert the following block into the file /etc/named.conf:

zone "your-domain.com" {
notify no;

type master;

file "your-domain";

};

The line ‘notify no;’ tells bind not to notify slave servers when zone files are updated. If
you have slave servers, you would probably want to change the ‘no’ to ‘yes’.
Then, put the following into the file /var/named/master/your-domain:

; Zone file for your-domain.com
; The full zone file

@ IN SOA ns.your-domain.com. hostmaster.your-domain.com. (
200002151 ; serial, todays date + todays serial

28

8H ; refresh, seconds

2H ; retry, seconds
1w ; expire, seconds
1D) ; minimum, seconds
NS ns ; Inet Address of name server
MX 10 mail.your-domain.com. ; Primary Mail Exchanger
MX 20 mail2.your-domain.com. ; Secondary Mail Exchanger
localhost A 127.0.0.1
ns A 192.168.196.2
mail A 192.168.196.4
mail2 A 192.168.196.7

All hostnames and IP addresses should be modified to fit your desired net setup.

Two things must be noted about the SOA record. ns.your-domain.com must be an ac-
tual machine with a A record. It is not legal to have a CNAME record for the machine
mentioned in the SOA record. It’s name need not be ‘ns’; it could be any legal host name.
Next, hostmaster.your-domain.com should be read as hostmaster@your-domain.com. This
must be a mail alias or mailbox where the person in charge of DNS should read mail fre-
quently (typically, you would set up ‘hostmaster’ as an alias for the person in charge in the
file /etc/postfix/aliases).

The MX lines in the file tells where mail addressed to someone@your-domain.com should
be delivered. First the number before the hostname tells the priority of the servers. When
mail is sent in this example, delivery would first be attempted to mail.your-domain.com, as
this name has the lowest number, and thus the highest priority.

If you want to have several names for the same machine, you would use the CNAME
record. The following line would be appropriate if your name server is also your web server:

www CNAME ns

Note that a name not ending in a dot (‘.”) will be expanded with the default hostname

(in this case your-comain.com). A name that ends with a dot, will not be expanded. Thus the
above example could also have been written as:

www.your-domain.com. CNAME ns.your-domain.com.

Next, you should add the reverse zone. This allows the conversion from a IP address to a
DNS name. Put the following into /etc/named.conf:

zone "196.168.192.in-addr.arpa" {
notify no;

type master;

file "your-domain.rev";

};

Note that in the IP address area before the .in-addr.arpa the numbers are supposed to
be in the opposite direction from the “real” IP addresses (compare with the addresses in
/var/named/master/your-domain). Put the following into the file /var/named/master/your-
domain.rev:

29

@ IN S0A ns.your-domain.com. hostmaster.your-domain.com. (
200002151 ; Serial, todays date + todays serial

8H ; Refresh

2H ; Retry

1w ; Expire

1D) ; Minimum TTL

NS ns.your-domain.com.

2 PTR ns.your-domain.com.
4 PTR mail.your—domain.com.
7 PTR mail2.your-domain.com.

If this is all done, you can restart bind to make it reread the configuration. The preferred
way of doing this is running ‘ndc restart’.

7 Print services

The print services of Trustix Secure Linux are taken care of by a set of tools called LPRng.
Using these tools, your server can be configured as a remote print server. LPRng is also used
by Samba for its Windows print services, and it is therefore a necessity to configure this to
act as any kind of print server.

To be able to use any configured printer, one must be sure to run the printer daemon,
Ipd. To make this be started every time the computer is restarted, use chkconfig (‘chkconfig
Ipd on’). Every time any of the configuration files are changed, Ipd should be restarted with
‘Jetc/rc.d/init.d/lpd restart’.

7.1 Configuring a printer

The printer configuration is set in the file /etc/printcap. The format of this file was originally
based on the termcap file format, which can make it a bit hard to understand without some
work. In this document, we will only provide some examples and try to explain them. The
examples and explanations can also be found on the LPRng home page.

We start out by defining a printer connected to the parallel port, as this printcap entry is
very simple:

parallel printer
1p:
:1p=/dev/1p0
:sh:sf

e The first line is a comment describing the printer.

Second is the printer name, ‘Ip’

Third, we tell the program to use the device /dev/lp0

The ‘sh’ and ‘sf’ will prevent lpd from trying to create banner pages or form feeds
between jobs.

30

If you discover that Unix jobs result in a ‘staircase’ appearance, then you need to force
the printer to do LF (linefeed) to CR/LF (carriage return/line feed) conversion.

simple parallel printer
1p:
:1p=/dev/1p0
:if=/usr/libexec/filters/1pf
:sh:sf

The Ipf filter specified in the ‘if="line will do LF to CF/LF conversion.
If you want to print to a remote printer or print server which supports the RFC1179
protocol, you can use the following printcap:

simple remote printer
remote:
:1p=raw@serverhostname

If this printer or remote print server does not do its own formatting, you might consider
adding the ‘if=’ line from the last example to the above example.

For more information about creating a printcap entry, and also quite a bit of other infor-
mation, see the LPRng home page http://www.astart.com/lprng/LPRng.html or the Linux
Documentation Project at http://www.linuxdoc.org

7.2 Running the print server

The LPRng daemon supports running as a print server for remote systems, but is per default
set to deny any connections from other hosts. To allow connections from the outside, this has
to be defined in the file /etc/lpd.perms.

Example Ipd.perms file:

allow root on server to control jobs
ACCEPT SERVICE=C SERVER REMOTEUSER=root
REJECT SERVICE=C

#

allow same user on originating host to remove a job
ACCEPT SERVICE=M SAMEHOST SAMEUSER

allow root on server to remove a job
ACCEPT SERVICE=M SERVER REMOTEUSER=root
REJECT SERVICE=M

all other operations allowed

DEFAULT ACCEPT

This config file would allow all remote hosts to send print jobs to your host, which would
probably be a bad idea. You should add a line like this:

REJECT NOT REMOTEHOST=*.ourname.com,*.friendly.com

This way connections from computers that do not have DNS entries ending in our-
name.com or friendly.com are rejected.

31

