Index index by Group index by Distribution index by Vendor index by creation date index by Name Mirrors Help Search

libjpeg8-8.2.2-71.1 RPM for s390x

From OpenSuSE Ports Tumbleweed for s390x

Name: libjpeg8 Distribution: openSUSE:Factory:zSystems
Version: 8.2.2 Vendor: obs://build.opensuse.org/openSUSE:Factory:zSystems
Release: 71.1 Build date: Fri Aug 19 21:06:20 2022
Group: Unspecified Build host: s390zl28
Size: 699485 Source RPM: libjpeg-turbo-2.1.4-71.1.src.rpm
Url: https://sourceforge.net/projects/libjpeg-turbo
Summary: A SIMD-accelerated JPEG compression/decompression library
A library for manipulating JPEG images. It supports
architecture-specific SIMD instructions, such as SSE/SSE2/AVX2,
AltiVec, NEON, MIPS DSPR2, and Loongson MMI.

Provides

Requires

License

BSD-3-Clause

Changelog

* Mon Aug 15 2022 Tom Mbrt <tom.mbrt@googlemail.com>
  - update to 2.1.4:
    * Fixed a regression introduced in 2.1.3 that caused build failures with
      Visual Studio 2010.
    * The tjDecompressHeader3() function in the TurboJPEG C API and the
      TJDecompressor.setSourceImage() method in the TurboJPEG Java API now
      accept "abbreviated table specification" (AKA "tables-only") datastreams,
      which can be used to prime the decompressor with quantization and Huffman
      tables that can be used when decompressing subsequent "abbreviated image"
      datastreams.
    * libjpeg-turbo now performs run-time detection of AltiVec instructions on
      OS X/PowerPC systems if AltiVec instructions are not enabled at compile
      time. This allows both AltiVec-equipped (PowerPC G4 and G5) and
      non-AltiVec-equipped (PowerPC G3) CPUs to be supported using the same
      build of libjpeg-turbo.
    * Fixed an error ("Bogus virtual array access") that occurred when
      attempting to decompress a progressive JPEG image with a height less than
      or equal to one iMCU (8 * the vertical sampling factor) using
      buffered-image mode with interblock smoothing enabled. This was a
      regression introduced by 2.1 beta1[6(b)].
    * Fixed two issues that prevented partial image decompression from working
      properly with buffered-image mode:
    * Attempting to call jpeg_crop_scanline() after jpeg_start_decompress()
      but before jpeg_start_output() resulted in an error ("Improper call to
      JPEG library in state 207".)
    * Attempting to use jpeg_skip_scanlines() resulted in an error ("Bogus
      virtual array access") under certain circumstances.
* Tue Jul 05 2022 Jan Engelhardt <jengelh@inai.de>
  - Add requires between baselibs
* Mon Apr 18 2022 Cristian Rodríguez <crrodriguez@opensuse.org>
  - Use nasm instead of yasm, the latter has not released any update
    in 7 years.
* Sun Mar 20 2022 Dirk Müller <dmueller@suse.com>
  - update to 2.1.3:
    * Fixed a regression introduced by 2.0 beta1[7] whereby cjpeg compressed PGM
      input files into full-color JPEG images unless the `-grayscale` option was
      used.
    * cjpeg now automatically compresses GIF and 8-bit BMP input files into
      grayscale JPEG images if the input files contain only shades of gray.
    * The build system now enables the intrinsics implementation of the AArch64
      (Arm 64-bit) Neon SIMD extensions by default when using GCC 12 or later.
    * Fixed a segfault that occurred while decompressing a 4:2:0 JPEG image using
      the merged (non-fancy) upsampling algorithms (that is, with
      `cinfo.do_fancy_upsampling` set to `FALSE`) along with `jpeg_crop_scanline()`.
      Specifically, the segfault occurred if the number of bytes remaining in the
      output buffer was less than the number of bytes required to represent one
      uncropped scanline of the output image.  For that reason, the issue could only
      be reproduced using the libjpeg API, not using djpeg.
* Wed Nov 24 2021 Dirk Müller <dmueller@suse.com>
  - update to 2.1.2:
    * Fixed a regression introduced by 2.1 beta1[13] that caused the remaining
      GAS implementations of AArch64 (Arm 64-bit) Neon SIMD functions (which are used
      by default with GCC for performance reasons) to be placed in the `.rodata`
      section rather than in the `.text` section.  This caused the GNU linker to
      automatically place the `.rodata` section in an executable segment, which
      prevented libjpeg-turbo from working properly with other linkers and also
      represented a potential security risk.
    * Fixed an issue whereby the `tjTransform()` function incorrectly computed the
      MCU block size for 4:4:4 JPEG images with non-unary sampling factors and thus
      unduly rejected some cropping regions, even though those regions aligned with
      8x8 MCU block boundaries.
    * Fixed a regression introduced by 2.1 beta1[13] that caused the build system
      to enable the Arm Neon SIMD extensions when targetting Armv6 and other legacy
      architectures that do not support Neon instructions.
    * libjpeg-turbo now performs run-time detection of AltiVec instructions on
      FreeBSD/PowerPC systems if AltiVec instructions are not enabled at compile
      time.  This allows both AltiVec-equipped and non-AltiVec-equipped CPUs to be
      supported using the same build of libjpeg-turbo.
    * cjpeg now accepts a `-strict` argument similar to that of djpeg and
      jpegtran, which causes the compressor to abort if an LZW-compressed GIF input
      image contains incomplete or corrupt image data.
* Wed Sep 29 2021 pgajdos@suse.com
  - previous version updates fixes following bugs:
    CVE-2014-9092, CVE-2018-14498, CVE-2019-2201, CVE-2020-17541
    (bsc#1128712, bsc#1186764, bsc#807183, bsc#906761)
* Fri Aug 20 2021 pgajdos@suse.com
  - version update to 2.1.1
    1. Fixed a regression introduced in 2.1.0 that caused build failures
      with non-GCC-compatible compilers for Un*x/Arm platforms.
    2. Fixed a regression introduced by 2.1 beta1[13] that prevented the
      Arm 32-bit (AArch32) Neon SIMD extensions from building unless
      the C compiler flags included -mfloat-abi=softfp or -mfloat-abi=hard.
    3. Fixed an issue in the AArch32 Neon SIMD Huffman encoder whereby
      reliance on undefined C compiler behavior led to crashes
      ("SIGBUS: illegal alignment") on Android systems when running
      AArch32/Thumb builds of libjpeg-turbo built with recent versions
      of Clang.
    4. Added a command-line argument (-copy icc) to jpegtran that causes
      it to copy only the ICC profile markers from the source file and
      discard any other metadata.
    5. libjpeg-turbo should now build and run on CHERI-enabled
      architectures, which use capability pointers that are larger than
      the size of size_t.
    6. Fixed a regression introduced by 2.1 beta1[5] that caused a segfault
      in the 64-bit SSE2 Huffman encoder when attempting to losslessly
      transform a specially-crafted malformed JPEG image.
* Tue May 04 2021 Dirk Müller <dmueller@suse.com>
  - disable SIMD for armv6hl, not available
* Mon Apr 26 2021 Guillaume GARDET <guillaume.gardet@opensuse.org>
  - version update to 2.1.0
    lot of changes, see
    * https://github.com/libjpeg-turbo/libjpeg-turbo/releases/tag/2.0.90
    * https://github.com/libjpeg-turbo/libjpeg-turbo/releases/tag/2.1.0
* Mon Jan 11 2021 Andreas Schwab <schwab@suse.de>
  - Fix setting of FLOATTEST
* Mon Dec 28 2020 pgajdos@suse.com
  - version update to 2.0.6
    1. Fixed "using JNI after critical get" errors that occurred on Android
    platforms when using any of the YUV encoding/compression/decompression/decoding
    methods in the TurboJPEG Java API.
    2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`:
    - Fixed segfaults or "Corrupt JPEG data: premature end of data segment"
    errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or
    4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that
    is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.)  2.0.0[6] was a
    similar fix, but it did not cover all cases.
    - `jpeg_skip_scanlines()` now throws an error if two-pass color
    quantization is enabled.  Two-pass color quantization never worked properly
    with `jpeg_skip_scanlines()`, and the issues could not readily be fixed.
    - Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when
    skipping past the end of an image.
    3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW
    toolchains targetting Arm64 (AArch64) Windows binaries.
    4. Fixed unexpected visual artifacts that occurred when using
    `jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC
    scan of a progressive JPEG image.
    5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component
    JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8
    API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.)
  - modified sources
    % libjpeg-turbo.keyring
* Wed Aug 12 2020 Matthias Eliasson <elimat@opensuse.org>
  - Update to version 2.0.5
    * Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures
      in the libjpeg-turbo regression tests. Specifically, the
    jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions
    in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be
      fixed, and other functions that are incompatible with big endian MIPS CPUs
    are disabled when building libjpeg-turbo for such CPUs.
    * Fixed an oversight in the TJCompressor.compress(int) method in the
      TurboJPEG Java API that caused an error ("java.lang.IllegalStateException:
    No source image is associated with this instance") when attempting to use
    that method to compress a YUV image.
    * Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer
      overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the
    values in a binary PPM/PGM input file exceeded the maximum value defined in
    the file's header and that maximum value was less than 255. libjpeg-turbo
    1.5.0 already included a similar fix for binary PPM/PGM files with maximum
    values greater than 255.
    * The TurboJPEG API library's global error handler, which is used in
      functions such as tjBufSize() and tjLoadImage() that do not require a
    TurboJPEG instance handle, is now thread-safe on platforms that support
    thread-local storage.
  - Fix source verification
  - Drop patches fixed upstream:
    * ctest-depends.patch
    * libjpeg-turbo-CVE-2020-13790.patch
  - Run spec-cleaner
    * Remove package groups
    * Use make macros
* Mon Jun 08 2020 pgajdos@suse.com
  - security update
  - added patches
    fix CVE-2020-13790 [bsc#1172491], heap-based buffer over-read in get_rgb_row() in rdppm.c via a malformed PPM input file
    + libjpeg-turbo-CVE-2020-13790.patch
* Sun Mar 29 2020 Aaron Stern <ukbeast89@protonmail.com>
  - Upate to version 2.0.4:
  - bug 388 was fixed upstream
    https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388
  - removed patches, as it is included in this release.
    * Fixed a regression in the Windows packaging system
    (introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo
    SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed
    on the same system, only one of them could be uninstalled.
    * Fixed a signed integer overflow and subsequent segfault that occurred when
      attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench.
    * Fixed out-of-bounds write in tjDecompressToYUV2() and tjDecompressToYUVPlanes()
      (sometimes manifesting as a double free) that occurred when attempting to decompress
      grayscale JPEG images that were compressed with a sampling factor other than 1
      (for instance, with cjpeg -grayscale -sample 2x2).
    * Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly
      identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images.
      This was known to cause a buffer overflow when attempting to decompress some such images using
      tjDecompressToYUV2() or tjDecompressToYUVPlanes().
    * Fixed an issue, detected by ASan, whereby attempting to losslessly transform a specially-crafted
      malformed JPEG image containing an extremely-high-frequency coefficient block
      (junk image data that could never be generated by a legitimate JPEG compressor) could cause the
      Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].)
      Given that the buffer overrun was fully contained within the stack and did not cause a segfault
      or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor)
      is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk.
      The ARM 64-bit (ARMv8) NEON SIMD assembly code now stores constants in a separate read-only data
      section rather than in the text section, to support execute-only memory layouts.
  - libjpeg-turbo-issue-388.patch upstreamed
* Tue Mar 17 2020 John Whately <john+OpenSuse@whately.me>
  - Added If statments for Fedora not having sertain openSUSE macros
* Tue Nov 12 2019 pgajdos@suse.com
  - fix upstream bug 388 [bsc#1156402]
  - added patches
    https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388
    + libjpeg-turbo-issue-388.patch
* Sat Oct 05 2019 Bjørn Lie <bjorn.lie@gmail.com>
  - Update to version 2.0.3:
    * Fixed "using JNI after critical get" errors that occurred on
      Android platforms when passing invalid arguments to certain
      methods in the TurboJPEG Java API.
    * Fixed a regression in the SIMD feature detection code,
      introduced by the AVX2 SIMD extensions (2.0 beta1), that was
      known to cause an illegal instruction exception, in rare cases,
      on CPUs that lack support for CPUID leaf (or on which the
      maximum CPUID leaf has been limited by way of a BIOS setting.)
    * The 4:4:0 (h1v2) fancy (smooth) chroma upsampling algorithm in
      the decompressor now uses a similar bias pattern to that of the
      4:2:2 (h2v1) fancy chroma upsampling algorithm, rounding up or
      down the upsampled result for alternate pixels rather than
      always rounding down. This ensures that, regardless of whether
      a 4:2:2 JPEG image is rotated or transposed prior to
      decompression (in the frequency domain) or after decompression
    (in the spatial domain), the final image will be similar.
    * Fixed an integer overflow and subsequent segfault that occurred
      when attempting to compress or decompress images with more than
      1 billion pixels using the TurboJPEG API.
    * Fixed a regression introduced by 2.0 beta1[15] whereby
      attempting to generate a progressive JPEG image on an
      SSE2-capable CPU using a scan script containing one or more
      scans with lengths divisible by 16 would result in an error
      ("Missing Huffman code table entry") and an invalid JPEG image.
    * Fixed an issue whereby `tjDecodeYUV()` and
      `tjDecodeYUVPlanes()` would throw an error ("Invalid
      progressive parameters") or a warning ("Inconsistent
      progression sequence") if passed a TurboJPEG instance that was
      previously used to decompress a progressive JPEG image.
* Wed Mar 27 2019 pgajdos@suse.com
  - use -O0 for debugging like everywhere (better experience)
* Wed Mar 13 2019 pgajdos@suse.com
  - updated to version 2.0.2:
    1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search
    path (rpath) from being embedded in the libjpeg-turbo shared libraries and
    executables for macOS and iOS.  This caused a fatal error of the form
    "dyld: Library not loaded" when attempting to use one of the executables,
    unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the
    libjpeg-turbo shared libraries.
    2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that
    occurred when attempting to load a BMP file with more than 1 billion pixels
    using the `tjLoadImage()` function.
    3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to
    decompress a specially-crafted malformed JPEG image to a 256-color BMP using
    djpeg.
    4. Fixed a floating point exception that occurred when attempting to
    decompress a specially-crafted malformed JPEG image with a specified image
    width or height of 0 using the C version of TJBench.
    5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1,
    or 1x3 luminance and chrominance sampling factors.  This is a non-standard way
    of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and
    chrominance sampling factors), but the JPEG format and the libjpeg API both
    allow it.
    6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate
    incorrect PPM images when used with the `-colors` option.
    7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which
    `ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE.
    8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that
    occurred when compressing RGB images whose image rows were not 64-bit-aligned.
  - modified patches
    % ctest-depends.patch (refreshed)
  - deleted patches
    - libjpeg-turbo-CVE-2018-19644.patch (upstreamed)
    - libjpeg-turbo-CVE-2018-20330.patch (upstreamed)
  - added sources
    + libjpeg-turbo-2.0.2.tar.gz.sig
    + libjpeg-turbo.keyring
* Thu Jan 24 2019 Jan Engelhardt <jengelh@inai.de>
  - Use -Og for debug_build
* Thu Jan 03 2019 Petr Gajdos <pgajdos@suse.com>
  - security update
    * CVE-2018-20330 [bsc#1120646]
      + libjpeg-turbo-CVE-2018-20330.patch
* Wed Jan 02 2019 Petr Gajdos <pgajdos@suse.com>
  - security update
    * CVE-2018-19644 [bsc#1117890]
      + libjpeg-turbo-CVE-2018-19644.patch

Files

/usr/lib64/libjpeg.so.8
/usr/lib64/libjpeg.so.8.2.2
/usr/share/licenses/libjpeg8
/usr/share/licenses/libjpeg8/LICENSE.md


Generated by rpm2html 1.8.1

Fabrice Bellet, Sun Oct 9 13:12:24 2022